讨论光谱仪进行物质成分分析,尤其是用作定量分析,就绕不开比尔朗伯定律(Beer Lambert Law),其公式如下:
其中,A为吸光度(Absorbance),T为透射率(Transmission),为波长,K为摩尔吸光系数,描述物质特性及其与光的作用特性,L为吸收层厚度,也就是光在该物质中走过的距离,c为物质浓度。
公式都有适用条件,比尔朗伯定律是假设平行光垂直入射于一段均匀物质,且光与物质之间不会发生荧光或化学作用。
按照朴素的理解,一种物质的吸光度与其浓度和厚度分别成正比。
令入射光强度为,则经过一段物质后,其出光强度为
在实际测量过程中,通常入射光和出射光
是可直接测量的量,去求取吸光度,所以该公式可以写作:
值得一提的是,吸光度还可以称作光密度(Optical Density,OD),例如描述衰减片性能时常使用OD。光的衰减除了使用吸光度来描述,还经常使用对数形式的衰减量(Attenuation)进行描述,他们之间的换算关系为:
从这个公式可以看出,可以参照电学里的对数功率,便于工程运算,例如在激光雷达这种光衰减尺寸很大的情况下,常使用以dB为单位的衰减量。
当被测物为均匀分布的微粒时,除了光吸收,颗粒对光的散射(含反射)也会导致光的衰减,这种情况下比尔朗伯定律中的吸光系数可替换为消光系数:
其中的消光系数(extinction coefficient)由颗粒的尺寸、折射率、入射光波长决定,用米氏理论(Mie Theory)来描述其公式较复杂,可简写作:
其中为尺寸参数,综合了颗粒直径d与入射光波长
,
为颗粒的复折射率,实部
为通常理解的折射率,虚部
则代表了光的吸收特性。
米氏理论将颗粒假定为理想球体,要求均匀分布且浓度较低。米氏理论可获得颗粒对光散射的严格解,但是其计算非常复杂,这里推荐一篇论文‘球形粒子Mie散射参量的Matlab改进算法’,论文附有matlab实现代码,笔者以前做米氏理论分析的时候就是基于该代码。下图中,笔者计算了一种PS小球的消光系数随尺寸参数
变化的情况。随尺寸参数由小到大,消光系数经历了三个阶段。(1)瑞利散射区,粒子尺寸远小于波长时,消光系数与尺寸参数的四次方成正比。(2)米氏散射区,粒子尺寸与波长接近时消光系数会剧烈震荡,(3)夫琅禾费散射区,粒子尺寸远大于波长时,虽然消光系数逐渐趋近于常数,衍射效应可以忽略,可用几何光学来解释和计算。