哈希算法-----JAVA 源码中实现的HashMap学习总结

http://blog.csdn.net/magic_coder/article/details/6342159


阅读JAVA中HashMap的源码时,以前数据结构学的都又回到脑海中,JAVA中的HashMap是"链表散列"的结构。有些收获点在此记录。

 

1. 基本结构Entry为 key-value,HashMap中的Entry<K,V>结构大致如下:

static class Entry<K,V> implements Map.Entry<K,V>{

final K key;

V value;

Entry<K,V> next;

final int hash;

.......

}

HashMap这里的Entry<K,V>相当于《数据结构》中节点node,Entry包含key(常量),value,hash(哈希值)和指向下一个Entry结构的引用。这么一来,一个Entry就相当于一个链表了。

 

2. HashMap本身的成员变量如下:

 

//The table, resized as necessary. Length MUST Always be a power of two.

transient Entry[] table;

(核心结构,table是一个Entry类型的数组,每一个元素都是Entry节点的链表。)

// The default initial capacity - MUST be a power of two.

 

static final int  DEFAULT_INITIAL_CAPACITY = 16;


 默认哈希表的初始容量,必须为2的多少次幂。为什么?正确答案:这是为了让元素在数组中分布均匀,而且为元素在数组中位置的计算速度优化做了铺垫。

 

考虑哈希表要添加一个元素,现在假设前提是某个Entry的hash值已经计算出来,那么我们都知道哈希表下一步就是根据这个hash值

把Entry放在table数组的某个位置。我们首先想到的就是把hash值对数组长度取模运算,这样一来,元素的分布相对来说是比较均匀的。但是,“模”运算的消耗还是比较大。我们看一下Java的牛人是怎么写的。Java源码中indexFor(int h, int length) 方法用来计算某Entry对象应该保存在 table 数组的哪个索引处,其代码如下:

 

 

static int indexFor(int h, int length) {
return h & (length-1);
}
这个h为Entry的哈希值,length为table数组的长度。

 

这个方法简单而又非常巧妙,它通过 h & (table.length -1) 来得到该对象的保存位,而HashMap底层数组的长度总是 2 的 n 次方,这里就是HashMap在速度上优化的一个点。在 HashMap 构造器中有如下代码:

int capacity = 1;
   while (capacity < initialCapacity)
        capacity <<= 1;
   这段代码保证初始化时HashMap的容量总是2的n次方,即底层数组的长度总是为2的n次方。
当length总是 2 的n次方时,h& (length-1)运算等价于对length取模,也就是h%length,但是&比%具有更高的效率。

   这看上去很简单,其实比较有玄机的,我们举个例子来说明:
   假设数组长度分别为15和16,优化后的hash码分别为8和9,那么&运算后的结果如下:
       h & (table.length-1)         hash               table.length-1
       8 & (15-1):                      0100      &              1110         =       0100
       9 & (15-1):                      0101      &              1110         =       0100
       -------------------------------------------------------------------------------------- 
       8 & (16-1):                      0100       &             1111         =       0100
       9 & (16-1):                      0101       &             1111         =       0101
  
   从上面的例子中可以看出:当它们和15-1(1110)“与”的时候,产生了相同的结果,也就是说它们会定位到数组中的同一个位置上去,这就产生了碰撞,8和9会被放到数组中的同一个位置上形成链表,那么查询的时候就需要遍历这个链 表,得到8或者9,这样就降低了查询的效率。同时,我们也可以发现,当数组长度为15的时候,hash值会与15-1(1110)进行“与”,那么 最后一位永远是0,而0001,0011,0101,1001,1011,0111,1101这几个位置永远都不能存放元素了,空间浪费相当大,更糟的是这种情况中,数组可以使用的位置比数组长度小了很多,这意味着进一步增加了碰撞的几率,减慢了查询的效率!而当数组长度为16时,即为2的n次方时,2n-1得到的二进制数的每个位上的值都为1,这使得在低位上&时,得到的和原hash的低位相同,加之hash(int h)方法对key的hashCode的进一步优化,加入了高位计算,就使得只有相同的hash值的两个值才会被放到数组中的同一个位置上形成链表。

 

所以说,当数组长度为2的n次幂的时候,不同的key算得得index相同的几率较小,那么数据在数组上分布就比较均匀,也就是说碰撞的几率小,相对的,查询的时候就不用遍历某个位置上的链表,这样查询效率也就较高了。现在明白为什么MUST be a power of two 了吧。Java在这里充分考虑了速度的优化。


static final int MAXIMUM_CAPACITY = 1 << 30;

 

//The load factor used when none specified in constructor.

static final float DEFAULT_LOAD_FACTOR = 0.75f;

这个0.75是HashMap的负载因子,即数据结构做题的时候算的那个 “散列表的实际元素数目(n)/ 散列表的容量(m)”。

负载因子衡量的是一个散列表的空间的使用程度,负载因子越大表示散列表的装填程度越高,反之愈小。对于使用链表法的散列表来说,查找一个元素的平均时间是O(1+a),因此如果负载因子越大,对空间的利用更充分,然而后果是查找效率的降低;如果负载因子太小,那么散列表的数据将过于稀疏,对空间造成严重浪费。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值