1 传统Sigmoid系激活函数
传统神经网络中最常用的两个激活函数,Sigmoid系(Logistic-Sigmoid 、Tanh-Sigmoid)被视为神经网络的核心所在。
从数学上来看,非线性的Sigmoid函数对中央区的信号增益较大,对两侧区的信号增益小,在信号的特征空间映射上,有很好的效果。
从神经科学上来看,中央区酷似神经元的兴奋态,两侧区酷似神经元的抑制态,因而在神经网络学习方面,可以将重点特征推向中央区,将非重点特征推向两侧区。
无论是哪种解释,看起来都比早期的线性激活函数(y=x),阶跃激活函数(-1/1,0/1)高明了不少。
1.1 近似生物神经激活函数:Softplus&ReLu
2001年,神经科学家Dayan、Abott从生物学角度,模拟出了脑神经元接受信号更精确的激活模型,该模型如左图所示:
这个模型对比Sigmoid系主要变化有三点:①单侧抑制 ②相对宽阔的兴奋边界 ③稀疏激活性(重点,可以看到红框里前端状态完全没有激活)
同年,Charles Dugas等人在做正数回归预测论文中偶然使用了Softplus函数,Softplus函数是Logistic-Sigmoid函数原函数,即,softplus的微分就是logistic function
按照论文的说法,一开始想要使用一个指数函数(天然正数)作为激活函数来回归,但是到后期梯度实在太大,难以训练,于是加了一个log来减缓上升趋势。
加了1是为了保证非负性。同年,Charles Dugas等人在NIPS会议论文中又调侃了一句,Softplus可以看作是强制非负校正函数(Rectified Linear Units) f(x) = max(0,x)的平滑版本。
偶然的是,同是2001年,ML领域的Softplus/Rectifier激活函数与神经科学领域提出的脑神经元激活频率函数有神似的地方,这促成了新的激活函数的研究。
另外一种函数叫做softmax function或者normalized exponential是logistic function的一个泛化,如下:
the softmax function常被用来various probabilistic multiclass classification methods 比如multinomial logistic regression,multiclass linear discriminant analysis, naive Bayes classifiers and artificial neural networks等。在Andrew Ng的机器学习课程中,softmax regression中就用到了softmax function。这里点一下说明。当然本文的重点还是在rectified linear function上。
2. 几种变体:
noisy ReLUs
可将其包含Gaussian noise得到noisy ReLUs,f(x)=max(0,x+N(0,σ(x))),常用来在机器视觉任务里的restricted Boltzmann machines中。
leaky ReLUs
允许小的非零的gradient 当unit没有被激活时。
3. Advantages
(Softplus是ReLU的圆滑版,公式为:g(x)=log(1+e^x),从上面的结果看,效果比ReLU稍差)
ReLU在经历预训练和不经历预训练时的效果差不多,而其它激活函数在不用预训练时效果就差多了。ReLU不预训练和sigmoid预训练的效果差不多,甚至还更好。
相比之下,ReLU的速度非常快,而且精确度更高。
因此ReLU在深度网络中已逐渐取代sigmoid而成为主流。
ReLU导数(分段):
x <= 0时,导数为0
x > 0时,导数为1
早期多层神经网络如果用sigmoid函数或者hyperbolic tangent作为激活函数,如果不进行pre-training的话,会因为gradient vanishing problem而无法收敛。
而预训练的用处:规则化,防止过拟合;压缩数据,去除冗余;强化特征,减小误差;加快收敛速度。而采用ReLu则不需要进行pre-training。