莫烦强化学习视频笔记:第三节 3.2 Sarsa算法更新和思维决策(迷宫例子)

目录

1. 要点 

2. 算法流程

3. 算法代码部分 

3.1 迭代更新

3.2 思维决策代码 

3.2.1 学习 


1. 要点 

这次我们用同样的迷宫例子来实现 RL 中另一种和 Qlearning 类似的算法, 叫做 Sarsa (state-action-reward-state-action). 我们从这一个简称可以了解到, Sarsa 的整个循环都将是在一个路径上, 也就是 on-policy, 下一个 state, 和下一个 action 将会变成他真正采取的 action 和 state. 和 Qlearning 的不同之处就在这. Qlearning 的下一个 state_ 和action_ 在算法更新的时候都还是不确定的 (off-policy). 而 Sarsa 的 state, action 在这次算法更新的时候已经确定好了 (on-policy).

Q-learning是off-policy的,就是可以看着别人玩,自己学着别人再玩;Sarsa是on-policy的算法,自身走到哪一步就学习哪一步,所以Sarsa只能从自身的经验学。

2. 算法流程

3-1-1.png

整个算法还是一直不断更新 Q table 里的值, 然后再根据新的值来判断要在某个 state 采取怎样的 action. 不过于 Qlearning 不同之处:

  • 他在当前 state 已经想好了 state 对应的 action, 而且想好了 下一个 state_ 和下一个 action_ (Qlearning 还没有想好下一个 action_)
  • 更新 Q(s,a) 的时候基于的是下一个 Q(s_, a_) (Qlearning 是基于 maxQ(s_))

这种不同之处使得 Sarsa 相对于 Qlearning, 更加的胆小. 因为 Qlearning 永远都是想着 maxQ 最大化, 因为这个 maxQ 而变得贪婪, 不考虑其他非 maxQ 的结果. 我们可以理解成 Qlearning 是一种贪婪, 大胆, 勇敢的算法, 对于错误, 死亡并不在乎. 而 Sarsa 是一种保守的算法, 他在乎每一步决策, 对于错误和死亡比较敏感. 这一点我们会在可视化的部分看出他们的不同. 两种算法都有他们的好处, 比如在实际中, 你比较在乎机器的损害, 用一种保守的算法, 在训练时就能减少损坏的次数.

通过演示,可以发现Sarsa算法中的agent非常“怕”那两个坑,以至于会长时间再左上角徘徊,也不敢靠近坑。可以说Sarsa算法中的agent比较“胆小”和谨慎。但其实最后也是可以找到宝藏的,因为还有10%的可能是随机走的。

3. 算法代码部分 

3.1 迭代更新

首先我们先 import 两个模块, maze_env 是我们的环境模块, 已经编写好了, 大家可以直接在这里下载maze_env 模块我们可以不深入研究, 如果你对编辑环境感兴趣, 可以去看看如何使用 python 自带的简单 GUI 模块 tkinter 来编写虚拟环境. 莫烦也有对应的教程maze_env 就是用 tkinter 编写的. 而 RL_brain 这个模块是 RL 的大脑部分, 在3.2节中介绍.

from maze_env import Maze

from RL_brain import SarsaTable
下面的代码, 我们可以根据上面的图片中的算法对应起来, 这就是整个 Sarsa 最重要的迭代更新部分啦.
def update():
    for episode in range(100):
        # 初始化环境
        observation = env.reset()

        # Sarsa 根据 state 观测选择行为
        action = RL.choose_action(str(observation))

        while True:
            # 刷新环境
            env.render()

            # 在环境中采取行为, 获得下一个 state_ (obervation_), reward, 和是否终止
            observation_, reward, done = env.step(action)

            # 根据下一个 state (obervation_) 选取下一个 action_
            action_ = RL.choose_action(str(observation_))

            # 从 (s, a, r, s, a) 中学习, 更新 Q_tabel 的参数 ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # 将下一个当成下一步的 state (observation) and action
            observation = observation_
            action = action_

            # 终止时跳出循环
            if done:
                break

    # 大循环完毕
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = SarsaTable(actions=list(range(env.n_actions)))

    env.after(100, update)
    env.mainloop()

3.2 思维决策代码 

 接着上节内容, 我们来实现 RL_brain 的 SarsaTable 部分, 这也是 RL 的大脑部分, 负责决策和思考.

和之前定义 Qlearning 中的 QLearningTable 一样, 因为使用 tabular 方式的 Sarsa 和 Qlearning 的相似度极高,

class SarsaTable:
    # 初始化 (与之前一样)
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):

    # 选行为 (与之前一样)
    def choose_action(self, observation):

    # 学习更新参数 (有改变)
    def learn(self, s, a, r, s_):

    # 检测 state 是否存在 (与之前一样)
    def check_state_exist(self, state):

我们甚至可以定义一个 主class RL, 然后将 QLearningTable 和 SarsaTable 作为 主class RL 的衍生, 这个主 RL 可以这样定义. 所以我们将之前的__init__,check_state_exist, choose_action, learn全部都放在这个主结构中, 之后根据不同的算法更改对应的内容就好了. 所以还没弄懂这些功能的朋友们, 请回到之前的教程再看一遍.

import numpy as np
import pandas as pd


class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        ... # 和 QLearningTable 中的代码一样

    def check_state_exist(self, state):
        ... # 和 QLearningTable 中的代码一样

    def choose_action(self, observation):
        ... # 和 QLearningTable 中的代码一样

    def learn(self, *args):
        pass # 每种的都有点不同, 所以用 pass

如果是这样定义父类的 RL class, 通过继承关系, 那之子类 QLearningTable class 就能简化成这样:

class QLearningTable(RL):   # 继承了父类 RL
    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(QLearningTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)    # 表示继承关系

    def learn(self, s, a, r, s_):   # learn 的方法在每种类型中有不一样, 需重新定义
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, :].max()
        else:
            q_target = r
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)

3.2.1 学习 

有了父类的 RL, 我们这次的编写就很简单, 只需要编写 SarsaTable 中 learn 这个功能就完成了. 因为其他功能都和父类是一样的. 这就是我们所有的 SarsaTable 于父类 RL 不同之处的代码. 是不是很简单.

class SarsaTable(RL):   # 继承 RL class

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)    # 表示继承关系

    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, a_]  # q_target 基于选好的 a_ 而不是 Q(s_) 的最大值
        else:
            q_target = r  # 如果 s_ 是终止符
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # 更新 q_table

如果想一次性看到全部代码, 请去我的Github 

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值