【莫烦python 强化学习】代码 笔记 Sarsa算法更新/思维决策 迷宫

本文探讨了在Maze环境中,Q-learning由于其off-policy特性,展现出更强的探索性,直接寻找奖励最高的路径,而Sarsa则更保守,在尝试中避免风险。通过Python代码实现的RL_brain模块展示了这两种算法的差异,Sarsa的学习方式导致它更为谨慎,不会盲目行动。
摘要由CSDN通过智能技术生成

Q-learning 比 Sarsa 更勇敢(off-policy)探索性更强,直接找 reward 最大的方向,不怕进坑里,而 Sarsa 在不断尝试中保全自身,不断少踩地雷。

Q-learning 是先用新的状态能选择的最大Q值,更新q表后选择动作,更新q表时不考虑a_

Sarsa 是在更新q表之前就选择好了动作

1、maze_env.py

import numpy as np
import time
import sys
if sys.version_info.major == 2:
    import Tkinter as tk
else:
    import tkinter as tk


UNIT = 40   # pixels
MAZE_H = 4  # grid height
MAZE_W = 4  # grid width


class Maze(tk.Tk, object):
    def __init__(self):
        super(Maze, self).__init__()
        self.action_space = ['u', 'd', 'l', 'r']
        self.n_actions = len(self.action_space)
        self.title('maze')
        self.geometry('{0}x{1}'.format(MAZE_W * UNIT, MAZE_H * UNIT))
        self._build_maze()

    def _build_maze(self):
        self.canvas = tk.Canvas(self, bg='white',
                           height=MAZE_H * UNIT,
                           width=MAZE_W * UNIT)

        # create grids
        for c in range(0, MAZE_W * UNIT, UNIT):
            x0, y0, x1, y1 = c, 0, c, MAZE_H * UNIT
            self.canvas.create_line(x0, y0, x1, y1)
        for r in range(0, MAZE_H * UNIT, UNIT):
            x0, y0, x1, y1 = 0, r, MAZE_W * UNIT, r
            self.canvas.create_line(x0, y0, x1, y1)

        # create origin
        origin = np.array([20, 20])

        # hell
        hell1_center = origin + np.array([UNIT * 2, UNIT])
        self.hell1 = self.canvas.create_rectangle(
            hell1_center[0] - 15, hell1_center[1] - 15,
            hell1_center[0] + 15, hell1_center[1] + 15,
            fill='black')
        # hell
        hell2_center = origin + np.array([UNIT, UNIT * 2])
        self.hell2 = self.canvas.create_rectangle(
            hell2_center[0] - 15, hell2_center[1] - 15,
            hell2_center[0] + 15, hell2_center[1] + 15,
            fill='black')

        # create oval
        oval_center = origin + UNIT * 2
        self.oval = self.canvas.create_oval(
            oval_center[0] - 15, oval_center[1] - 15,
            oval_center[0] + 15, oval_center[1] + 15,
            fill='yellow')

        # create red rect
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')

        # pack all
        self.canvas.pack()

    def reset(self):
        self.update()
        time.sleep(0.5)
        self.canvas.delete(self.rect)
        origin = np.array([20, 20])
        self.rect = self.canvas.create_rectangle(
            origin[0] - 15, origin[1] - 15,
            origin[0] + 15, origin[1] + 15,
            fill='red')
        # return observation
        return self.canvas.coords(self.rect)

    def step1(self, action):
        s = self.canvas.coords(self.rect)
        base_action = np.array([0, 0])
        if action == 0:   # up
            if s[1] > UNIT:
                base_action[1] -= UNIT
        elif action == 1:   # down
            if s[1] < (MAZE_H - 1) * UNIT:
                base_action[1] += UNIT
        elif action == 2:   # right
            if s[0] < (MAZE_W - 1) * UNIT:
                base_action[0] += UNIT
        elif action == 3:   # left
            if s[0] > UNIT:
                base_action[0] -= UNIT

        self.canvas.move(self.rect, base_action[0], base_action[1])  # move agent

        s_ = self.canvas.coords(self.rect)  # next state

        # reward function
        if s_ == self.canvas.coords(self.oval):
            reward = 1
            done = True
            s_ = 'terminal'
        elif s_ in [self.canvas.coords(self.hell1), self.canvas.coords(self.hell2)]:
            reward = -1
            done = True
            s_ = 'terminal'
        else:
            reward = 0
            done = False

        return s_, reward, done

    def render(self):
        time.sleep(0.1)
        self.update()


def update():
    for t in range(10):
        s = env.reset()
        while True:
            env.render()
            a = 1
            s, r, done = env.step(a)
            if done:
                break

if __name__ == '__main__':
    env = Maze()
    env.after(100, update)
    env.mainloop()

2、RL_brain.py

import numpy as np
import pandas as pd

# 与 Q-learning 一样的地方,可模块化,继承
class RL(object):
    def __init__(self, action_space, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        self.actions = action_space  # a list
        self.lr = learning_rate
        self.gamma = reward_decay
        self.epsilon = e_greedy

        self.q_table = pd.DataFrame(columns=self.actions, dtype=np.float64)

    def check_state_exist(self, state):
        if state not in self.q_table.index:
            # append new state to q table
            self.q_table = self.q_table._append(
                pd.Series(
                    [0]*len(self.actions),
                    index=self.q_table.columns,
                    name=state,
                )
            )

    def choose_action(self, observation):
        self.check_state_exist(observation)
        # action selection
        if np.random.rand() < self.epsilon:
            # choose best action
            state_action = self.q_table.loc[observation, :]
            # some actions may have the same value, randomly choose on in these actions
            action = np.random.choice(state_action[state_action == np.max(state_action)].index)
        else:
            # choose random action
            action = np.random.choice(self.actions)
        return action

    def learn(self, *args):
        pass

# on-policy
class SarsaTable(RL):

    def __init__(self, actions, learning_rate=0.01, reward_decay=0.9, e_greedy=0.9):
        super(SarsaTable, self).__init__(actions, learning_rate, reward_decay, e_greedy)

    # Q-learning 学习 (s, a, r, s_)
    # Q - learning是先用新的状态能选择的最大 Q 值更新 q 表后选择动作,更新 q 表时不考虑 a_
    # Sarsa 是在更新 q 表之前就选择好了动作
    def learn(self, s, a, r, s_, a_):
        self.check_state_exist(s_)
        q_predict = self.q_table.loc[s, a]
        if s_ != 'terminal':
            q_target = r + self.gamma * self.q_table.loc[s_, a_]  # next state is not terminal
        else:
            q_target = r  # next state is terminal
        self.q_table.loc[s, a] += self.lr * (q_target - q_predict)  # update

3、run_this.py

from maze_env import Maze
from RL_brain import SarsaTable

def update():
    for episode in range(100):
        # initial observation
        observation = env.reset()

        # RL choose action based on observation
        # 在循环外选 action
        action = RL.choose_action(str(observation))

        while True:
            # fresh env
            env.render()

            # RL take action and get next observation and reward
            observation_, reward, done = env.step1(action)

            # RL choose action based on next observation
            # Q-learning 只会估计下一个 action ,但不一定会采取
            action_ = RL.choose_action(str(observation_))

            # RL learn from this transition (s, a, r, s, a) ==> Sarsa
            RL.learn(str(observation), action, reward, str(observation_), action_)

            # swap observation and action
            observation = observation_
            # 下一步 action 是确定的
            action = action_

            # break while loop when end of this episode
            if done:
                break

    # end of game
    print('game over')
    env.destroy()

if __name__ == "__main__":
    env = Maze()
    RL = SarsaTable(actions=list(range(env.n_actions)))

    env.after(100, update)
    env.mainloop()

4、运行结果 与Q-learning类似,但更保守,安全

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值