Manacher作为一种求最大回文字符串长度的算法,其应用回比较少,但它o(n)的复杂度确实是很惊艳,下面给出一道它的基础应用。
链接:登录—专业IT笔试面试备考平台_牛客网
题意:给定一个字符串,允许将其截成两段,并将前一段接在后一段的后面,求操作过后的最大回文字符串长度。
其实有点合并石子那道题的味道,因为这其实也是一个类似于环状的结构,所以我们不妨将字符串翻倍,然后在0到s.size()-1的区间(闭)内,每次向右截取一段长度为s.size()的字符串,跑一遍Manacher,然后实时更新ans,最后输出ans就可以了。
void manch(){
int mx=0,p0=0;//mx:最大回文右边界,po:最大回文中心
for(int i=1;i<=tmp.size();++i){//从左到右更新
if(mx>i)//i在最大回文右边界内部
Len[i]=min(mx-i,Len[2*p0-i]);//在Len[j]和mx-i中取小
else Len[i]=1;
while(tmp[i-Len[i]]==tmp[i+Len[i]]) Len[i]++;
if(Len[i]+i>mx){
mx=Len[i]+i;
p0=i;
}
ans=max(ans,Len[i]);
}
}
这个就是 Manacher的模板了,没有太多好说的(这算法真是好写又好用,就是应用范围太小。。。)
void grt(int l,int r){//提取字符串;
tmp.clear();
tmp+='@';
for(int i=l;i<r;++i){
tmp+='#';
tmp+=s[i];
}
tmp+='#';
}
每次截取一个区间的字符串,并对其进行预处理。
#include<bits/stdc++.h>
using namespace std;
#define ll long long
string s;
string tmp;
int ans=-1;
int df;
int Len[20010];
void grt(int l,int r){//提取字符串;
tmp.clear();
tmp+='@';
for(int i=l;i<r;++i){
tmp+='#';
tmp+=s[i];
}
tmp+='#';
}
void manch(){
int mx=0,p0=0;//mx:最大回文右边界,po:最大回文中心
for(int i=1;i<=tmp.size();++i){//从左到右更新
if(mx>i)//i在最大回文右边界内部
Len[i]=min(mx-i,Len[2*p0-i]);//在Len[j]和mx-i中取小
else Len[i]=1;
while(tmp[i-Len[i]]==tmp[i+Len[i]]) Len[i]++;
if(Len[i]+i>mx){
mx=Len[i]+i;
p0=i;
}
ans=max(ans,Len[i]);
}
}
int main()
{
cin>>s;
df=s.size();
s=s+s;
for(int i=0;i<df;++i){
grt(i,i+df);
manch();
}
cout<<ans-1<<endl;
return 0;
}
注意,grt函数中,截取的区间应该是【l,r),因为在主函数内用的是grt(i,i+df),长度为df,下标应当-1.
然后ans是Len【i】的最大值,区间长度应当是Len【i】-1,所以最后ans也要-1.