回归模型的因子分析

回归分析步骤

【*】

选择最佳的回归模型

【1】 介绍了选择变量的2个简单方法:逐步回归法 - stepAIC(),全子集回归 - regsubsets()。前者最小化AIC,后者最大化R平方。但美中不足是,stepAIC()并不适用于混合效应模型,R语言报错:"extractAIC"没有适用于"MixMod"目标对象的方法 。
【2】 补充说明了全子集回归方法,并根据Mallows Cp统计量作图。

变量筛选

【1】 机器学习-变量筛选之IV值和WOE
【2】 为什么IV、PSI、KS这几项模型和特征指标几乎只在风控算法领域有使用?

因子分析

因子分析步骤(Factor Analysis)
因子分析步骤视频

因子分析实例 - 汽车数据

R语言底层代码

psych包的用法:【1】【2】

主成分分析 \ 因子分析

Python实现

factor_analyzer库

数据标准化

数据的标准化(normalization)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值