《普林斯顿微积分读本》学习笔记


公式编辑链接:https://katex.org/docs/supported.html#macros

第 1 章 :函数、图像和直线

1.1 函数

函数是将一个对象转化为另一个对象的规则。起始对象称为输入,来自称为定义域的集合。返回的对象称为输出,来自称为上域的集合。

例如: f ( x ) = x 2 \begin{aligned} f(x) = x^2 \end{aligned} f(x)=x2
f \begin{aligned} f \end{aligned} f 是一个变换规则, f ( x ) \begin{aligned} f(x)\end{aligned} f(x) 是把这个变化规则应用于变量 x \begin{aligned} x\end{aligned} x 后得到的结果,因此 f \begin{aligned} f \end{aligned} f 是一个函数。

一个函数必须给每一个有效的输入指定唯一的输出。

值域是所有可能的输出所组成的集合。值域是上域的一个子集,上域是可能输出的集合,而值域是实际输出的集合

1.1.1 区间表示法

{ x:2 ⩽ x ⩽ 5} 写成 [2, 5] 闭区间
{ x:2 < x < 5} 写成 (2, 5) 开区间
{ x:2 ⩽ x < 5} 写成 [2, 5) 半开区间
集合R 写成 (-∞, ∞ )

1.1.2 求定义域

按惯例,定义域包含尽可能多的实数集合,以下情况需注意:

(1) 分数的分母不能是零。
(2) 不能取一个负数的平方根(或四次根,六次根等)。
(3) 不能取一个负数或零的对数。

1.1.3 利用图像求值域

例如: F ( x ) = x 2 \begin{aligned} F(x) = x^2 \end{aligned} F(x)=x2,指定定义域为[-2, 1] ,画出函数图像,想象从图像左右两边朝Y轴 水平射入两束亮光形成两个影子,值域就是影子的并集。

1.1.4垂线检验

函数f的图像是所有坐标为(x, f(x))的点的集合,其中,x在f的定义域中;在图像上没有两个点会落在相对于x轴的同一条垂线上,垂线检验: 任何垂线与图像相交小于或等于一次 ,那么此图像可确定为函数图像。

x 2 + y 2 = 9 \begin{aligned} x^2 + y^2= 9 \end{aligned} x2+y2=9 为两个函数,故通过垂线检验。

1.2 反函数

(1) 从一个函数 f \begin{aligned} f \end{aligned} f出发,使得:对于在 f \begin{aligned} f \end{aligned} f值域中的任意y,都只有唯一的 x \begin{aligned} x\end{aligned} x值满足 f ( x ) = y \begin{aligned} f(x) = y \end{aligned} f(x)=y。也就是说,不同的输入对应不同的输出
(2) 反函数 f − 1 \begin{aligned} f^{-1} \end{aligned} f1 的定义域和 f \begin{aligned} f \end{aligned} f的值域相同。
(3) 反函数 f − 1 \begin{aligned} f^{-1} \end{aligned} f1 的值域和 f \begin{aligned} f \end{aligned} f的定义域相同。
(4) 如果 f ( x ) = y \begin{aligned} f(x) = y \end{aligned} f(x)=y, 那么 f − 1 ( y ) = x \begin{aligned} f^{-1}(y) = x \end{aligned} f1(y)=x

1.2.1 水平线检验

f ( x ) = y \begin{aligned} f(x) = y \end{aligned} f(x)=y 通过点(0, y y y) 的水平线和函数图像相交至多一次,那么这个函数就有反函数。

1.2.2 求逆

原函数: f ( x ) = x 3 f(x) = x^3 f(x)=x3
反函数: f − 1 ( x ) = x 3 f^{-1}(x) = \sqrt[3]{x} f1(x)=3x
画一条 y = x y =x y=x的直线,反函数和原函数通过这条直线形成镜面反射。

1.2.3 限制定义域

如果水平检验线失败,反函数不存在,可以通过限制定义域保留 x x x的唯一值取得反函数。

1.2.4 反函数的反函数

如果没有限制定义域求得反函数,反函数的反函数就是原函数。
如果限制定义域方能求得反函数,反函数的反函数仅在限制定义与。

1.3 函数的复合

f ( x ) = c o s ( x 2 ) f(x) = cos(x^2) f(x)=cos(x2)由函数 g ( x ) = x 2 g(x) = x^2 g(x)=x2 h ( x ) = c o s ( x ) h(x) = cos(x) h(x)=cos(x)组成,记为 f ( x ) = h ( g ( x ) ) f(x) = h(g(x)) f(x)=h(g(x))或者 f = h ∘ g f = h \circ g f=hg

1.4 奇函数和偶函数

偶函数:对 f f f定义域里所有 x x x f ( x ) = f ( − x ) f(x) = f(-x) f(x)=f(x);
偶函数的图像关于 y y y轴具有镜面对称性
奇函数:对 f f f定义域里所有 x x x f ( x ) = − f ( − x ) f(x) =- f(-x) f(x)=f(x);
奇函数的图像关于原点有 18 0 。 180^。 180的点对称性(奇函数在0点有定义就一定穿过原点)
一个函数可能是奇函数,也可能是偶函数,也可能非奇非偶, f ( x ) = 0 f(x)=0 f(x)=0是唯一的既是奇函数也是偶函数的函数。

1.5 线性函数的图象

线性函数: f ( x ) = m x + b f(x) = mx+b f(x)=mx+b, 图像为一条直线。,斜率为m,y轴截距为b。
如果已知直线通过点 ( x o , y o ) (x_o,y_o) (xo,yo),斜率为m,则它的方程为 y − y o = m ( x − x o ) y-y_o = m(x-x_o) yyo=m(xxo)
如果一条直线通过 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) ( x 2 , y 2 ) (x_2,y_2) (x2,y2),则它的斜率等于 y 2 − y 1 x 2 − x 1 \dfrac{y_2-y_1}{x_2-x_1} x2x1y2y1

1.6 常见函数及其图像

(1) 多项式
度数为n的多项式的通式的数学写法为(最大幂指数n叫做多项式度数):
p ( x ) = a n x n + a n − 1 x n − 1 + . . . + a 2 x 2 + a 1 x + a 0 p(x) = a_nx^n + a_{n-1}x^{n-1}+...+a_2x^2+a_1x+a_0 p(x)=anxn+an1xn1+...+a2x2+a1x+a0 其中 a n a_n an x n x^n xn的系数, a n − 1 a_{n-1} an1 x n − 1 x^{n-1} xn1系数,且 a n a_n an为主导系数。

x 0 到 x 7 x_0到x_7 x0x7的图像
从的图像
多项式主导系数正负度数的奇偶决定图像两端走势。
在这里插入图片描述
度数为2的多项式又叫二次函数,可书写为 p ( x ) = a x 2 + b x + c p(x) = ax^2 + bx+ c p(x)=ax2+bx+c
Δ = b 2 − 4 a c \Delta = b^2 - 4ac Δ=b24ac
Δ > 0 \Delta > 0 Δ>0,有两个不同的解
Δ = 0 \Delta = 0 Δ=0,只有一个解,也可以说也可以说有两个相同的解
Δ < 0 \Delta < 0 Δ<0,在实数范围内无解。
对于 Δ ⩾ 0 \Delta \geqslant 0 Δ0 函数的解为: − b ± b 2 − 4 a c 2 a \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} 2ab±b24ac
二次函数的配方
例如: 2 x 2 − 3 x + 10 = 2 ( x 2 − 2 3 x + 5 ) = 2 ( ( x − 3 4 ) 2 + 71 16 ) = 2 ( x − 3 4 ) 2 + 71 8 2x^2-3x+10 = 2(x^2-\dfrac{2}{3}x+5)=2((x-\dfrac{3}{4})^2+\dfrac{71}{16})=2(x-\dfrac{3}{4})^2+\dfrac{71}{8} 2x23x+10=2(x232x+5)=2((x43)2+1671)=2(x43)2+871

(2) 有理函数
形式为: p ( x ) q ( x ) \dfrac{p(x)}{q(x)} q(x)p(x),其中p和q为多项式。
最简单的有理函数是多项式本身,即 q ( x ) q(x) q(x)为11的有理函数,另一个简单的例子是 1 x n \dfrac{1}{x^n} xn1,其中n为正整数。

一些有理函数的图像
在这里插入图片描述

(3) 指数函数和对数函数
指数函数: y = b x ( b > 1 ) y=b^x(b>1) y=bx(b>1) ,定义域为全体实数,y轴截距为1,值域为大于零的实数,左端的水平渐近线为x轴,但不会接触x轴。
y = b − x ( b > 1 ) y=b^{-x}(b>1) y=bx(b>1) y = b x ( b > 1 ) y=b^x(b>1) y=bx(b>1) 关于y轴对称。
在这里插入图片描述
对数函数: y = b x ( b > 1 ) y=b^x(b>1) y=bx(b>1)有反函数,即为以b为底的对数函数 y = l o g b ( x ) y=log_b(x) y=logb(x)。以直线 y = x y=x y=x为对称轴,该函数定义域为 ( 0 , + ∞ ) (0,+\infty) 0+),值域为全体实数,y轴为垂直渐近线。

(4) 三角函数
下章详解

(5) 带有绝对值的函数
绝对值函数: f ( x ) = ∣ x ∣ f(x) = |x| f(x)=x
∣ x ∣ = { x if  x ⩾ 0 − x if  x < 0 |x| = \begin{cases}x &\text{if }x \geqslant 0 \\-x &\text{if } x < 0\end{cases} x={xxif x0if x<0
∣ x − y ∣ |x-y| xy是数轴上在 x x x y y y两点间的距离

y = ∣ x ∣ y=|x| y=x的图像
在这里插入图片描述
y = ∣ l o g 2 ( x ) ∣ y=|log_2(x)| y=log2(x)的图像
在这里插入图片描述

第 2 章 :三角学回顾

2.1 基本知识

弧度: 旋转一周,我们说成2π弧度(而不是 36 0 。 360^。 360
用弧度度量的角 = π 180 \dfrac{π}{180} 180π x 用度度量的角

三角函数基本公式:
正弦,余弦,正切

s i n ( θ ) = 对 边 斜 边 sin(\theta)=\dfrac{对边}{斜边} sin(θ)= c o s ( θ ) = 邻 边 斜 边 cos(\theta)=\dfrac{邻边}{斜边} cos(θ)= t a n ( θ ) = 对 边 邻 边 tan(\theta)=\dfrac{对边}{邻边} tan(θ)=
在这里插入图片描述
正割、余割、余切

s e c ( θ ) = 1 s i n ( θ ) sec(\theta)=\dfrac{1}{sin(\theta)} sec(θ)=sin(θ)1 c s c ( θ ) = 1 c o s ( θ ) csc(\theta)=\dfrac{1}{cos(\theta)} csc(θ)=cos(θ)1 c o t ( θ ) = 1 t a n ( θ ) cot(\theta)=\dfrac{1}{tan(\theta)} cot(θ)=tan(θ)1
在这里插入图片描述

2.2 三角函数定义域的扩展

参考角:表示角 θ \theta θ的射线和 x x x轴间的最小角,它必须位于0到 π 2 \dfrac{π}{2} 2π之间
s i n ( π 6 ) = − s i n ( 7 π 6 ) = s i n ( 13 π 6 ) = 1 2 sin(\dfrac{π}{6}) = -sin(\dfrac{7π}{6}) =sin(\dfrac{13π}{6}) = \dfrac{1}{2} sin(6π)=sin(67π)=sin(613π)=21

2.2.1 ASTC方法

正弦,余弦,正切
三个函数在第一象限(A)中均为正,在第二象限(S)中正弦为正,在第三象限(T)中正切为正,在第四象限(c)中余弦为正。
在这里插入图片描述
ASTC方法总结表:求位于0到 2 π 2π 2π之间三角函数值

(1) 画出象限图表,确定在该图中你感兴趣的角在哪里,然后在图中标出该角;
(2) 如果角在 x x x或者 y y y轴上,画出三角函数图象,从图像中读取数值;
(3) 否则,找出该角的参考角;
(4) 如果可以,使用上表求出参考角的三角函数值;
(5) 使用ASTC图来决定你是否需要添加一个负号。

2.2.2 [ 0 , 2 π ] [0, 2π] [0,2π]以外的三角函数

[ 0 , 2 π ] [0, 2π] [0,2π]以外的三角函数简单地加上或减去2π的倍数,直到得到角在0和2π之间。

2.3 三件函数的图象

s i n ( θ ) sin(\theta) sin(θ)为奇函数, c o s ( θ ) cos(\theta) cos(θ)为偶函数, t a n ( θ ) tan(\theta) tan(θ)为奇函数
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
s e c ( θ ) sec(\theta) sec(θ)为偶函数, c s c ( θ ) csc(\theta) csc(θ)为奇函数, c o t ( θ ) cot(\theta) cot(θ)为奇函数。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

2.4 三角恒等式

t a n ( x ) = s i n ( x ) c o s ( x ) tan(x) = \dfrac{sin(x)}{cos(x)} tan(x)=cos(x)sin(x) c o s ( x ) = c o s ( x ) s i n ( x ) cos(x) = \dfrac{cos(x)}{sin(x)} cos(x)=sin(xcos(x)

毕达哥拉斯定理: s i n 2 ( x ) + c o s 2 ( x ) = 1 sin^2(x) + cos^2(x) =1 sin2(x)+cos2(x)=1

1 + t a n 2 ( x ) = s e c 2 ( x ) 1+ tan^2(x) = sec^2(x) 1+tan2(x)=sec2(x)

c o t 2 ( x ) + 1 = c s c 2 ( x ) cot^2(x) + 1 = csc^2(x) cot2(x)+1=csc2(x)

s i n ( x ) = c o s ( π 2 − x ) sin(x) = cos(\dfrac{π}{2}-x) sin(x)=cos(2πx) t a n ( x ) = c o t ( π 2 − x ) tan(x) = cot(\dfrac{π}{2}-x) tan(x)=cot(2πx) s e c ( x ) = c s c ( π 2 − x ) sec(x) = csc(\dfrac{π}{2}-x) sec(x)=csc(2πx)

s i n ( A + B ) = s i n ( A ) c o s ( B ) + c o s ( A ) s i n ( B ) sin(A+B) = sin(A)cos(B) + cos(A)sin(B) sin(A+B)=sin(A)cos(B)+cos(A)sin(B)
c o s ( A + B ) = c o s ( A ) c o s ( B ) − s i n ( A ) s i n ( B ) cos(A+B) = cos(A)cos(B) - sin(A)sin(B) cos(A+B)=cos(A)cos(B)sin(A)sin(B)

s i n ( A − B ) = s i n ( A ) c o s ( B ) − c o s ( A ) s i n ( B ) sin(A-B) = sin(A)cos(B) - cos(A)sin(B) sin(AB)=sin(A)cos(B)cos(A)sin(B)
c o s ( A − B ) = c o s ( A ) c o s ( B ) + s i n ( A ) s i n ( B ) cos(A-B) = cos(A)cos(B) + sin(A)sin(B) cos(AB)=cos(A)cos(B)+sin(A)sin(B)

倍角公式:
s i n ( 2 x ) = 2 s i n ( x ) c o s ( x ) sin(2x) = 2sin(x)cos(x) sin(2x)=2sin(x)cos(x)
c o s ( 2 x ) = 2 c o s 2 ( x ) − 1 = 1 − 2 s i n 2 ( x ) cos(2x) = 2cos^2(x) -1 = 1- 2sin^2(x) cos(2x)=2cos2(x)1=12sin2(x)

第 3 章 极限导论

3.1 极限:基本思想

极限描述了函数在一个定点附近的行为。
f ( x ) = x − 1 f(x) = x-1 f(x)=x1,当x = /   {=}\mathllap{/\,} =/ 2
x x x接近2时, f ( x ) f(x) f(x)接近于1,写作:
lim ⁡ x → 2 f ( x ) = 1 \lim\limits_{x→2}f(x) =1 x2limf(x)=1

3.2 左极限与右极限

极限不一定总存在。
左极限: lim ⁡ x → a − f ( x ) = L \lim\limits_{x→a^-}f(x) =L xalimf(x)=L
右极限: lim ⁡ x → a + f ( x ) = L \lim\limits_{x→a^+}f(x) =L xa+limf(x)=L
仅当左右极限相等时存在双侧极限: lim ⁡ x → a f ( x ) = L \lim\limits_{x→a}f(x) =L xalimf(x)=L

3.3 何时不存在极限

当左右极限不相等时双侧极限不存在
垂直渐进线的正式定义:
f f f x = a x=a x=a处有一条垂直渐近线说的是, lim ⁡ x → a − f ( x ) = L \lim\limits_{x→a^-}f(x) =L xalimf(x)=L lim ⁡ x → a − f ( x ) = L \lim\limits_{x→a^-}f(x) =L xalimf(x)=L,其中至少有一个极限是 ∞ \infty − ∞ - \infty

lim ⁡ x → 0 + s i n ( 1 x ) \lim\limits_{x→0^+}sin(\dfrac{1}{x}) x0+limsin(x1) 右极限不存在。

3.4 在 ∞ \infty − ∞ - \infty 处的极限

f f f y = L y=L y=L 处有一条右侧水平渐近线表示 lim ⁡ x → ∞ f ( x ) = L \lim\limits_{x→\infty}f(x) = L xlimf(x)=L
f f f y = M y=M y=M 处有一条左侧水平渐近线表示 lim ⁡ x → − ∞ f ( x ) = M \lim\limits_{x→-\infty}f(x) = M xlimf(x)=M

大数和小数的非正式定义:
如果一个数的绝对值是非常大的数,则这个数是大的
如果一个数非常接近于0(但不是真的等于0),则这个数是小的

3.5 关于渐近线的两个常见错误认知

一个函数最多可以有不同的右侧和左侧水平渐近线共两条,或者一条都没有,也或许只有一条;一个函数可以有很多条垂直渐近线。

另一个常见的错误认知是说一个函数不可能和它的渐近线相交
例如: lim ⁡ x → ∞ s i n ( x ) x = 0 \lim\limits_{x→\infty}\dfrac{sin(x)}{x} = 0 xlimxsin(x)=0

3.6 三明治定理

三明治定理又被称作夹逼定理
如果对于所有在a附近的x都有 g ( x ) ⩽ f ( x ) ⩽ h ( x ) g(x)\leqslant f(x) \leqslant h(x) g(x)f(x)h(x),且 lim ⁡ x → a g ( x ) = L \lim\limits_{x→a}g(x) = L xalimg(x)=L = lim ⁡ x → a h ( x ) = L \lim\limits_{x→a}h(x) = L xalimh(x)=L,则 lim ⁡ x → a f ( x ) = L \lim\limits_{x→a}f(x) = L xalimf(x)=L

3.7 极限的基本类型小结

(1) 在 x = a x=a x=a 时的右极限。在 x = a x = a x=a的左侧以及 x = a x= a x=a f ( x ) f(x) f(x)的行为是无关紧要的。
在这里插入图片描述
(2) 在 x = a x=a x=a 时的左极限。在 x = a x = a x=a的右侧以及 x = a x= a x=a f ( x ) f(x) f(x)的行为是无关紧要的。
在这里插入图片描述
(3) 在 x = a x=a x=a 时的双侧极限。左右极限存在但不相等,因此双侧极限不存在;左右极限存在且相等,双侧极限存在并等于左右极限值, f ( a ) f(a) f(a)的值是无关紧要的;
在这里插入图片描述
(4) 在 x → ∞ x→\infty x时的极限:
在这里插入图片描述
(5) 在 x → − ∞ x→-\infty x时的极限
在这里插入图片描述

第 4 章 如何求解涉及多项式的极限问题

4.1 包含当 x → a x→a xa时有理函数的极限

**有理函数:**两个多项式之比 f ( x ) = p ( x ) q ( x ) f(x) = \dfrac{p(x)}{q(x)} f(x)=q(x)p(x)
不定式: 0 0 \dfrac{0}{0} 00
求解极限:
代入法:
lim ⁡ x → 1 x 2 − 3 x + 2 x − 2 \lim\limits_{x→1}\dfrac{x^2-3x+2}{x-2} x1limx2x23x+2,直接将 x = 1 x=1 x=1带入函数式即可求得极限0。
分解法:
lim ⁡ x → 2 x 2 − 3 x + 2 x − 2 \lim\limits_{x→2}\dfrac{x^2-3x+2}{x-2} x2limx2x23x+2,直接将 x = 2 x=2 x=2带入函数式得到的结果为不定式,无法求解,故通过因式分解 lim ⁡ x → 2 x 2 − 3 x + 2 x − 2 = lim ⁡ x → 2 ( x − 2 ) ( x − 1 ) x − 2 = lim ⁡ x → 2 ( x − 1 ) \lim\limits_{x→2}\dfrac{x^2-3x+2}{x-2}=\lim\limits_{x→2}\dfrac{(x-2)(x-1)}{x-2}=\lim\limits_{x→2}(x-1) x2limx2x23x+2=x2limx2(x2)(x1)=x2lim(x1)求得极限值1。

a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^3-b^3 = (a-b)(a^2+ab+b^2) a3b3=(ab)(a2+ab+b2)
如果分母为0,但分子不为0,将总会涉及一条垂直渐近线。
根据左右极限正负判断该点属于下面哪一幅图。
在这里插入图片描述

4.2 当 x → a x→a xa时涉及平方根的极限

共轭表达式: a − b a-b ab的共轭表达式是 a + b a+b a+b,反之亦然。
当遇到平方根加上或者减去另外一个量,可以试着用该表达式的共轭表达式做乘法和除法。
lim ⁡ x → 5 x 2 − 9 − 4 x − 5 = lim ⁡ x → 5 x 2 − 9 − 4 x − 5 ∗ x 2 − 9 + 4 x 2 − 9 + 4 = lim ⁡ x → 5 x + 5 x 2 − 9 + 4 \lim\limits_{x→5}\dfrac{\sqrt{x^2-9}-4}{x-5}=\lim\limits_{x→5}\dfrac{\sqrt{x^2-9}-4}{x-5}*\dfrac{\sqrt{x^2-9}+4}{\sqrt{x^2-9}+4}=\lim\limits_{x→5}\dfrac{x+5}{\sqrt{x^2-9}+4} x5limx5x29 4=x5limx5x29 4x29 +4x29 +4=x5limx29 +4x+5

4.3 当 x → ∞ x→\infty x时涉及的有理函数的极限

lim ⁡ x → ∞ C x n = 0 \lim\limits_{x→\infty}\dfrac{C}{x^n} = 0 xlimxnC=0,当C为常数时。

lim ⁡ x → ∞ p ( x ) q ( x ) \lim\limits_{x→\infty}\dfrac{p(x)}{q(x)} xlimq(x)p(x)的极限,其中 p p p q q q为多项式:

(1) 如果 p p p的次数等于 q q q的次数,则极限为最大幂的系数之比
(2) 如果 p p p的次数大于 q q q的次数,则极限是 + ∞ +\infty + − ∞ -\infty
(3) 如果 p p p的次数小于 q q q的次数,则极限是0。

4.4 当 x → ∞ x→\infty x时的多项式型函数的极限

lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 2 x 2 + 6 x + 1 = lim ⁡ x → ∞ 16 x 4 + 8 + 3 x 4 x 2 ∗ ( 4 x 2 ) 2 x 2 + 6 x + 1 2 x 2 ∗ 2 x 2 = lim ⁡ x → ∞ 16 x 4 + 8 16 x 4 + 3 x 4 x 2 2 x 2 + 6 x + 1 2 x 2 ∗ 4 x 2 2 x 2 = lim ⁡ x → ∞ 1 + 8 16 x 4 + 3 4 x 1 + 6 2 x + 1 2 x 2 ∗ 4 2 = lim ⁡ x → ∞ 1 + 0 + 0 1 + 0 + 0 ∗ 2 = 2 \lim\limits_{x→\infty}\dfrac{\sqrt{16x^4+8}+3x}{2x^2+6x+1}=\lim\limits_{x→\infty}\dfrac{\dfrac{\sqrt{16x^4+8}+3x}{4x^2}*(4x^2)}{\dfrac{2x^2+6x+1}{2x^2}*2x^2}=\lim\limits_{x→\infty}\dfrac{\dfrac{\sqrt{16x^4+8}}{16x^4}+\dfrac{3x}{4x^2}}{\dfrac{2x^2+6x+1}{2x^2}}*\dfrac{4x^2}{2x^2}=\lim\limits_{x→\infty}\dfrac{\sqrt{1+\dfrac{8}{16x^4}}+\dfrac{3}{4x}}{1+\dfrac{6}{2x}+\dfrac{1}{2x^2}}*\dfrac{4}{2}=\lim\limits_{x→\infty}\dfrac{\sqrt{1+0}+0}{1+0+0}*2 = 2 xlim2x2+6x+116x4+8 +3x=xlim2x22x2+6x+12x24x216x4+8 +3x(4x2)=xlim2x22x2+6x+116x416x4+8 +4x23x2x24x2=xlim1+2x6+2x211+16x48 +4x324=xlim1+0+01+0 +02=2

4.5 当 x → − ∞ x→-\infty x时的有理函数的极限

解法同上,但如果 x x x为负, x 4 = x 2 \sqrt{x^4} = x^2 x4 =x2 x 4 4 = − x \sqrt[4]{x^4} = -x 4x4 =x

4.6 包含绝对值的的极限

lim ⁡ x → 0 − ∣ x ∣ x = − 1 \lim\limits_{x→0^-}\dfrac{|x|}{x} = -1 x0limxx=1
lim ⁡ x → 0 + ∣ x ∣ x = 1 \lim\limits_{x→0^+}\dfrac{|x|}{x} = 1 x0+limxx=1
lim ⁡ x → 0 ∣ x ∣ x E N D \lim\limits_{x→0}\dfrac{|x|}{x}END x0limxxEND,双侧极限不存在。

第 5 章 连续性和可导性

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值