- 博客(14)
- 收藏
- 关注
原创 Datawhale X 李宏毅苹果书AI夏令营 - 第三章:深度学习基础
![[Pasted image 20240506160317.png]]![[Pasted image 20240506160520.png]]损失函数 L(θ)L(θ)L(θ) 在 θ′θ ′θ′ 附近可近似为上式,上式跟梯度和海森矩阵有关,梯度就是一次微分,海森矩阵里面有二次微分的项。在临界点,梯度 ggg 为零,因此 (θ−θ′)Tg(\theta - \theta')^Tg(θ−θ′)Tg 为零。所以在临界点的附近,损失函数可被近似为 L(θ)≈L(θ′)+12(θ−θ′)TH(θ−θ′)L(\th
2024-08-27 21:50:25 677 1
原创 动手学大模型应用开发第五章:系统评估与优化
本文内容来自 https://datawhalechina.github.io/llm-universe本章节学习到了大模型的评估方法:人工评估、自动评估、大模型评估以及将以上组合起来的混合评估。评估之后就是优化,RAG可以被优化的就是两个部分:检索和生成。
2024-06-28 22:29:04 936
原创 动手学大模型应用开发第二章:使用 LLM API 开发应用
本文内容来自 https://datawhalechina.github.io/llm-universe。
2024-06-22 21:40:26 795
原创 【打卡】Coggle 30 Days of ML(24年5月):对话意图识别
本月竞赛学习将以对话意图识别展开,意图识别是指分析用户的核心需求,错误的识别几乎可以确定找不到能满足用户需求的内容,导致产生非常差的用户体验。在对话过程中要准确理解对方所想表达的意思,这是具有很大挑战性的任务。在本次学习中我们将学习:- 自然语言处理基础- 文本分类路线:正则表达式、TFIDF、FastText、BERT、T5、Prompt、GPT- 大模型分类路线:提示词、思维链、高效微调。
2024-05-31 21:49:12 793
原创 动手学大模型应用开发第四章:构建RAG应用
本文内容来自 https://datawhalechina.github.io/llm-universe。
2024-04-24 22:16:45 345
原创 动手学大模型应用开发第三章: 搭建知识库
本文内容来自 https://datawhalechina.github.io/llm-universe向量数据库是一种专门用于存储和检索向量数据(embedding)的数据库系统。它与传统的基于关系模型的数据库不同,它主要关注的是向量数据的特性和相似性。在向量数据库中,数据被表示为向量形式,每个向量代表一个数据项。这些向量可以是数字、文本、图像或其他类型的数据。向量数据库使用高效的索引和查询算法来加速向量数据的存储和检索过程。
2024-04-22 21:38:13 1216
原创 动手学大模型应用开发第一章:大模型简介
本文内容来自 https://datawhalechina.github.io/llm-universeLarge Language Model , 简称 LLM,也称大语言模型,是一种旨在理解和生成人类语言的人工智能模型。LLM 通常指包含数百亿(或更多)参数的语言模型,它们在海量的文本数据上进行训练,从而获得对语言深层次的理解。目前,国外的知名 LLM 有 GPT-3.5、GPT-4、PaLM、Claude 和 LLaMA 等,国内的有文心一言、讯飞星火、通义千问、ChatGLM、百川等。
2024-04-17 09:52:48 1173 1
原创 【打卡】基金金融问答
GLM 是智谱AI推出的新一代基座大模型,相比上一代有着显著提升的性能,逼近 GPT-4。GLM 支持更长的上下文(128k),具备强大的多模态能力,并且推理速度更快,支持更高的并发。GLM 的 API 接口为开发者提供了在自己应用中利用 GLM 进行语言生成的机会,为多种领域的任务提供了新的解决方案。大模型的 Agent 指的是以大型语言模型 (如 GPT-3、GPT-4 等) 为核心,构建的具有一定自主性和智能的软件实体。
2024-03-14 08:38:50 1522
原创 『AI办公 x 财务』第一期 workshop 任务二打卡
接着任务一打卡的内容,尝试 AI + Excel 工具 以及其它的 Prompt 来探索数据可行性分析。本身作为一名软件开发人员,现在慢慢的,业务需要一些数据分析功能。现在一方面在学习数据分析的理论和模型,另一方面还要学习实现方法。在数据分析的理论模型方面,会涉及到很多关于统计、营销、财务、管理、数据挖掘、机器学习等等。而实现方法最基本的是excel函数,进阶的有vba,统计上的spss,商业上的sas、informatica,开源的python、R,再往大了就是BI。
2024-01-02 15:24:15 949
原创 『AI办公 x 财务』第一期 workshop 任务一打卡
1.汇总:脚本应该遍历当前文件夹中的所有Excel文件,并将它们的内容汇总到一个新的Excel文件中。第一行需要在汇总的表格中,每行数据需要添加一个新列“表格名”,以标识该数据来自哪个原始表格。完成后,请将这个新的Excel文件保存在当前目录下,并命名为“汇总”。2.统计:在“汇总”文件中,除了上述汇总内容,还请添加一个新的工作表。在这个新工作表中,我需要统计湖南地区办公用品类别的总销售额、总数量和总利润。为您参考,我上传了一个示例表格,其中包含了类似的数据格式和内容。prompt 采用教材示例。
2023-12-24 13:33:07 1227
原创 普林斯顿微积分(二) 三角学回顾
学习微积分必须要了解三角学三个量 - 该点的xxx坐标和yyy坐标,以及该点到原点的距离rrrxxx- 邻边,yyy- 对边,rrr- 斜边sinθyrsinθrycosθxrcosθrxtanθyxtanθxyθ\thetaθ参考角:是介于表示角θ\thetaθ的射线和xxx轴间的最小的角,它必须位于 0 与π22π之间。
2023-04-01 17:21:17 224
原创 普林斯顿微积分(一) 函数、图像和直线
函数是将一个对象转化为另一个对象的规则。起始对象称为输入,来自称为定义域的集合。返回的对象称为输出,来自称为上域的集合,一般是实数集R\mathbb{R}R一个函数必须给每一个有效的输入指定唯一的输出按照惯例,定义域包括尽可能多的实数集合举例 (-8, 13] \ {2},这里的反斜杠表示不包括如果水平线检验失败并且没有反函数,怎么办?问题是对于相同的yyy有多个xxx的值唯一方法:必须决定要保留哪一个xxx值,然后放弃剩余的值这就是限制函数的定义域。
2023-03-22 15:07:03 425
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人