一、核心特征差异与应对方案
1. 数据表示维度差异
-
文本特征:离散符号序列(如BERT词向量)
-
图像特征:连续空间网格(如ViT的Patch Embedding)
-
解决方案:
-
采用跨模态投影层(如CLIP式双塔结构),通过对比学习对齐文本和图像的隐空间分布
-
引入可学习的模态转换矩阵 Walign,动态调整特征维度:
himg=Walign⋅Flatten(CNN(I))
htxt=Wproj⋅Transformer(T)
-
2. 语义对齐粒度差异
-
文本:基于词汇/短语的局部语义
-
图像:基于区域/物体的全局语义
-
关键技术:
-
动态注意力机制(如DeCLIP的跨模态Transformer),建立词汇-物体区域映射:
Attn(Q,K,V)=softmax(dkQKT)V
-
使用区域提议网络(RPN)提取图像候选区域,与文本实体进行匹配
-
3. 分布偏移问题
-
文本分布:遵循语言学规律(如n-gram共现)
-
图

最低0.47元/天 解锁文章
1069

被折叠的 条评论
为什么被折叠?



