一、声纹识别的实现原理
声纹识别通过分析人声音的生理和行为特征(如声带振动、声道形状、发音习惯等)构建唯一身份标识,其核心流程分为四个阶段:
1. 语音采集与预处理
-  
采集方式:通过电话、APP或智能终端麦克风获取语音信号,金融场景常用电话信道(8kHz采样率)和网络信道(16kHz采样率)两种模式。
 -  
预处理步骤:
-  
端点检测(VAD):截取有效语音片段,过滤静默和噪声。
 -  
降噪处理:采用谱减法或深度学习模型(如SEGAN)消除背景噪声。
 -  
语音增强:通过对抗训练提升跨信道鲁棒性(如工商银行采用多频段特征聚合)。
 
 -  
 
2. 特征提取
-  
传统方法:提取梅尔频率倒谱系数(MFCC)、线性预测倒谱系数(LPCC)等声学特征,捕捉音色细节。
 -  
深度学习方法:
-  
端到端模型:使用ResNet、Transformer等网络直接从语谱图学习高维特征。
 -  
度量学习:采用Additive Margin Softmax(AM-Softmax)或ArcFace损失函数,增强类内紧凑性和类间分离度。
 
 -  
 

                  
                  
                  
                  
最低0.47元/天 解锁文章
                          
                      
      
          
                
                
                
                
              
                
                
                
                
                
              
                
                
                    
              
            
                  
					1185
					
被折叠的  条评论
		 为什么被折叠?
		 
		 
		
    
  
    
  
					
					
					


            