问题:
Given two words (start and end), and a dictionary, find the length of shortest transformation
sequence from start to end, such that:
Only one letter can be changed at a time
Each intermediate word must exist in the dictionary
For example,
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
As one shortest transformation is "hit" -> "hot" -> "dot" -> "dog" -> "cog",
return its length 5.
Note:
Return 0 if there is no such transformation sequence.
All words have the same length.
All words contain only lowercase alphabetic characters.
答案:
import java.util.HashSet;
import java.util.LinkedList;
public class WordLadderTest1 {
/**
* @param args
*/
public static void main(String[] args) {
String start = "hit";
String end = "cog";
HashSet<String> dict = new HashSet<String>();
dict.add("hot");
dict.add("dot");
dict.add("dog");
dict.add("lot");
dict.add("cog");
System.out.println(ladderLength(start, end, dict));
}
public static int ladderLength(String start, String end, HashSet<String> dict) {
if (dict.size() == 0)
return 0;
LinkedList<String> wordQueue = new LinkedList<String>();
LinkedList<Integer> distanceQueue = new LinkedList<Integer>();
wordQueue.add(start);
distanceQueue.add(1);
while(!wordQueue.isEmpty()){
String currWord = wordQueue.pop();
Integer currDistance = distanceQueue.pop();
if(currWord.equals(end)){
return currDistance;
}
for(int i=0; i<currWord.length(); i++){
char[] currCharArr = currWord.toCharArray();
for(char c='a'; c<='z'; c++){
currCharArr[i] = c;
String newWord = new String(currCharArr);
if(dict.contains(newWord)){
wordQueue.add(newWord);
distanceQueue.add(currDistance+1);
dict.remove(newWord);
}
}
}
}
return 0;
}
}