Codeforces Round #274 (Div. 2) D. Long Jumps(二分)

 

output
standard output

Valery is a PE teacher at a school in Berland. Soon the students are going to take a test in long jumps, and Valery has lost his favorite ruler!

However, there is no reason for disappointment, as Valery has found another ruler, its length is l centimeters. The ruler already has n marks, with which he can make measurements. We assume that the marks are numbered from 1 to n in the order they appear from the beginning of the ruler to its end. The first point coincides with the beginning of the ruler and represents the origin. The last mark coincides with the end of the ruler, at distance l from the origin. This ruler can be repesented by an increasing sequence a1, a2, ..., an, where ai denotes the distance of the i-th mark from the origin (a1 = 0, an = l).

Valery believes that with a ruler he can measure the distance of d centimeters, if there is a pair of integers i and j (1 ≤ i ≤ j ≤ n), such that the distance between the i-th and the j-th mark is exactly equal to d (in other words, aj - ai = d).

Under the rules, the girls should be able to jump at least x centimeters, and the boys should be able to jump at least y (x < y) centimeters. To test the children's abilities, Valery needs a ruler to measure each of the distances x and y.

Your task is to determine what is the minimum number of additional marks you need to add on the ruler so that they can be used to measure the distances x and y. Valery can add the marks at any integer non-negative distance from the origin not exceeding the length of the ruler.

Input

The first line contains four positive space-separated integers n, l, x, y (2 ≤ n ≤ 105, 2 ≤ l ≤ 109, 1 ≤ x < y ≤ l) — the number of marks, the length of the ruler and the jump norms for girls and boys, correspondingly.

The second line contains a sequence of n integers a1, a2, ..., an (0 = a1 < a2 < ... < an = l), where ai shows the distance from the i-th mark to the origin.

Output

In the first line print a single non-negative integer v — the minimum number of marks that you need to add on the ruler.

In the second line print v space-separated integers p1, p2, ..., pv (0 ≤ pi ≤ l). Number pi means that the i-th mark should be at the distance of pi centimeters from the origin. Print the marks in any order. If there are multiple solutions, print any of them.

Sample test(s)
Input
3 250 185 230
0 185 250
Output
1
230
Input
4 250 185 230
0 20 185 250
Output
0
Input
2 300 185 230
0 300
Output
2
185 230
Note

In the first sample it is impossible to initially measure the distance of 230 centimeters. For that it is enough to add a 20 centimeter mark or a 230 centimeter mark.

In the second sample you already can use the ruler to measure the distances of 185 and 230 centimeters, so you don't have to add new marks.

In the third sample the ruler only contains the initial and the final marks. We will need to add two marks to be able to test the children's skills.


                                                   

首先判断x + a[i] 以及 y + a[i] 是否在存在尺子的刻度,如果都存在则输出0,哪一个无法找到,则输出哪一个的刻度。

若两个都没有刻度的话,应该判断一下是否可以通过 x 得到y 的刻度, 或者是通过y 得到x 的刻度。若不行, 则输出x,y 的刻度。

CODE:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <cstring>
#include <queue>
#include <stack>
#include <vector>
#include <set>
#include <map>
const int inf=0xfffffff;
typedef long long ll;
using namespace std;

int a[100005], ans[100005];
int main()
{
    //freopen("in", "r", stdin);
    int n, l, x, y;
    while(~scanf("%d %d %d %d", &n, &l, &x, &y)){
        for(int i = 0; i < n; ++i){
            scanf("%d", &a[i]);
        }
        int x1 = 0, y1 = 0;
        for(int i = 0;i < n; ++i){
            if(a[i] + x <= l && binary_search(a + i, a + n, a[i] + x)){
                x1 = 1;
                break;
            }
        }
        for(int i = 0; i < n; ++i){
            if(a[i] + y <= l && binary_search(a + i, a + n, a[i] + y)){
                y1 = 1;
                break;
            }
        }
        if(x1 == 1 && y1 == 1){
            printf("0\n");
        }
        else if(x1 + y1 == 1){
            if(x1 == 0){
                printf("1\n%d\n", x);
            }
            if(y1 == 0){
                printf("1\n%d\n", y);
            }
        }
        else{
            int ok = 1;
            for(int i = 0; i < n; ++i){
                if(ok && a[i] + y + x <= l &&
                   binary_search(a + i, a + n, a[i]+x+y)){
                    ok = 0;
                    printf("1\n%d\n", a[i] + x);
                    break;
                }
                if(ok && a[i] - y >= 0 &&
                   binary_search(a, a + i, a[i] + x - y)){
                    ok = 0;
                    printf("1\n%d\n", a[i] - y);
                    break;
                }
                if(a[i] + y <= l && binary_search(a + i, a + n, a[i] + y - x)){
                    ok = 0;
                    printf("1\n%d\n", a[i] + y);
                    break;
                }
            }
            if(ok) printf("2\n%d %d\n", x, y);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值