Spark入门(四):RDD基本操作

版权声明:转载请标注原文地址 https://blog.csdn.net/soul_code/article/details/77156613

1.RDD转换

RDD的所有转换操作都不会进行真正的计算

1.1单个RDD转换操作

# 创建测试RDD
val rdd = sc.parallelize(Array("hello world","java","scala easy"))

# 1.map():遍历RDD中的每个元素,将返回值构成新的RDD,返回值类型可和原RDD不一致
val mapRdd = rdd.map(x => "map:"+x)
mapRdd.foreach(println)
# 输出
# map:hello world
# map:java
# map:scala easy

# 2.flatMap(): 遍历RDD中的每个元素,将返回的迭代器的所有内容构成新的 RDD
val flatMapRdd = rdd.flatMap(x => x.split(" "))
flatMapRdd.foreach(println)
# 输出
# hello
# world
# java
# scala
# easy

# 3.filter():遍历RDD中的每个元素,将匹配的元素构成新的RDD
val filterRdd = rdd.filter(x => x.contains("java"))
filterRdd.foreach(x => x.contains("java"))
filterRdd.foreach(println)
# 输出
# java

# 4.distinct():去重
val distinctRdd = flatMapRdd.distinct()
distinctRdd.foreach(println)
# scala
# hello
# easy
# java
# world

# 5.sample(withReplacement, fraction, [seed]):对 RDD 采样,以及是否替换

1.2 两个RDD转换操作

# 创建两个测试RDD
val rdd1 = sc.parallelize(Array("java","scala","spring"))
val rdd2 = sc.parallelize(Array("c++","java","spark"))

# 1.union():合并两个RDD
val unionRdd = rdd1.union(rdd2)
unionRdd.foreach(println)
# java
# scala
# spring
# c++
# java
# spark

# 2.intersection():求两个RDD元素的共同元素
val intersectionRdd = rdd1.intersection(rdd2)
intersectionRdd.foreach(println)
# java

# 3.subtract():移除RDD中的指定元素
val subtractRdd = rdd1.subtract(rdd2)
subtractRdd.foreach(println)

# 4.cartesian():求两个RDD元素的笛卡尔积
val cartesianRdd = rdd1.cartesian(rdd2)
cartesianRdd.foreach(println)
# (java,c++)
# (java,java)
# (java,spark)
# (scala,c++)
# (scala,java)
# (scala,spark)
# (spring,c++)
# (spring,java)
# (spring,spark)

2.行动操作

行动操作会真正触发RDD的计算操作

2.1 reduce()

它接收一个函数作为参数,这个
函数要操作两个 RDD 的元素类型的数据并返回一个同样类型的新元素

val rdd = sc.parallelize(Array(1,2,3,4))
# 计算所有元素的总和
println(rdd.reduce((x,y) => x+y))
# 10

2.2 fold()

fold() 和 reduce() 类似,接收一个与 reduce() 接收的函数签名相同的函数,再加上一个
“初始值”来作为每个分区第一次调用时的结果。(例如 +
对应的 0, * 对应的 1,或拼接操作对应的空列表)。

# 计算所有元素的综合
println(rdd.fold(0)((x,y) => x+y))
# 10

2.3 collect()

将整个RDD的内容返回

rdd.collect().foreach(print)
#1234

2.4 take(n)

返回RDD中的n个元素

rdd.take(2).foreach(print)
#12

2.5 top(n)

返回RDD中前n个元素,top()会使用数据的默认排序

rdd.top(3)
#123

2.6 count()

返回RDD中所有元素的个数

print(rdd.count())
4

2.7 countByValue()

返回个元素在RDD中出现的个数

rdd.countByValue().foreach(println+)
(1,1)
(3,1)
(2,1)
(4,1)

2.8 takeSample(withReplacement, num, [seed])

从 RDD 中返回任意num个元素

rdd.takeSample(false,3)

2.9 foreach

对 RDD 中的每个元素使用给
定的函数

2.10 aggregate(zeroValue)(seqOp, combOp)

和 reduce() 相似,可以返回不同类型的函数

val result = rdd.aggregate((0, 0))((x, y) =>(x._1 + y, x._2 + 1),(part1, part2) =>(part1._1 + part2._1,part1._2 + part2._2))
print(result)
(10,4)

参数说明

((0, 0))
# 第一步:指定初始值
((x, y) =>(x._1 + y, x._2 + 1),
# 2:分片计算
# x为初始值(0,0),y为RDD元素(1,2,3,4)
# 假设RDD分布在两个分片上(1,2)为一个分片,(3,4)为一个分片
# 则计算结果如下:
# 分片1:
# 0+1,0+1
# 1+2,1+1
# 分片1结果:(3,2)
# 分片2:
# 0+3,0+1
# 3+4,1+1
# 分片2结果:(7,2)
(part1, part2) =>(part1._1 + part2._1,part1._2 + part2._2))
# 第三步:合并分片数据
# 3+7,2+2
# 输出结果(10,4)
展开阅读全文

没有更多推荐了,返回首页