bigKey问题?
比如一个String类型超过10kb,一个复合类型的value超过5000个,占用内存大
应该尽量避免使用bigkey
排查:
1.使用Redis自带的--bigkeys参数来查找
2.分析RDB文件
大量的key集中过期
1.给Key设置随机过期时间
2.开启lazy-free,让redis异步延迟释放key使用的内存,将该操作交给单独的子线程执行,避免阻塞主线程
Redis生产问题
Redis缓存穿透
场景:查询根本不存在的数据,使得请求直达存储层,导致负载过大甚至宕机
解决方案:
1.缓存空对象:
存储层未命中后,仍然将空值存入缓存层
再次访问该数据时,缓存层会直接返回空值
2.布隆过滤器
将所有存在的key提前存入布隆过滤器,在访问缓存层之前,先通过过滤器拦截,若请求的是不存在的key,则直接返回空值。
布隆过滤器
如果在平时我们要判断一个元素是否在一个集合中,通常会采用查找比较的方法,下面分析不同的数据结构查找效率:
采用线性表存储,查找时间复杂度为O(N)
采用平衡二叉排序树(AVL、红黑树)存储,查找时间复杂度为O(logN)
采用哈希表存储,考虑到哈希碰撞,整体时间复杂度也要O[log(n/m)]
当需要判断一个元素是否存在于海量数据集合中,不仅查找时间慢,还会占用大量存储空间,接下来看一下布隆过滤器如何解决这个问题
结构
m长度的维数组和k个哈希函数组成的结构。其主要实现方式是通过哈希函数将元素映射到一个位数组中,并将对应的位标记为 1。当检查一个元素是否存在于集合中时,将该元素进行哈希处理,并查看对应的位是否被标记为 1,如果全部被标记为 1,则认为该元素可能存在于集合中,否则肯定不存在于集合中。
优点
布隆过滤器的主要优点在于其高效性和空间效率。由于布隆过滤器只需要对每个元素进行哈希处理,并将对应的位标记为 1,因此其存储空间非常小,而且查询速度非常快。此外,布隆过滤器的误判率非常低,也就是说,它的判断结果几乎总是正确的。
缺点
然而,布隆过滤器也有一些缺点。其中最主要的缺点就是它有一定的误判率,也就是说,当布隆过滤器判断一个元素不在集合中时,有一定的概率会出现误判,即认为该元素在集合中。这主要是由于哈希函数的不可避免的碰撞引起的。此外,布隆过滤器还不支持删除操作,因为删除一个元素会影响到其他元素的判断结果。最后,布隆过滤器在处理大量元素时可能会出现哈希冲突,这会导致误判率增加,因此在设计布隆过滤器时需要合理选择哈希函数和位数组大小,以尽可能减少误判率。
缓存击穿
场景:一份热点数据,访问量非常大,在其缓存失效瞬间,大量请求直达存储层,导致服务崩溃
解决方案:
1.加互斥锁
对数据的访问加互斥锁,当一个线程访问该数据时,其他线程只能等待
这个线程访问后,缓存中的数据将被重建,届时其他线程就可以直接从缓存中取值。保证只有一个请求会落到数据库上,减少数据库的压力
2.永不过期
不设置过期时间,所以不会出现上述问题。为每个value设置逻辑过期时间,当发现该值逻辑过期时使用单独的线程重建缓存
缓存雪崩
场景:由于某些原因,缓存层不能提供服务,导致所有的请求直达存储层,造成存储层宕机
解决方案:
1.避免同时过期
设置过期时间时,附加一个随机数,避免大量的value过期
2.构建高可用的Redis缓存
部署多个Redis实例,个别节点宕机依然可以保证服务的整体可用
3.构建多级缓存
增加本地缓存,在存储层面前多加一级屏障,降低请求直达存储层的几率
4.启用限流和降级措施
对存储层增加限流措施,当请求超出限制时,对其提供降级服务
##