linux常用命令的使用之awk

awk就是把需要处理的文本逐行的读入,以空格为默认分隔符将每行切片,切开的部分再进行各种分析处理

#man awk 执行结果
这里写图片描述
在这里可能很奇怪为什么是gawk而不是awk,其实gawk程序是Unix中原awk程序的GNU版本。现在我们平常使用的awk其实就是gawk,可以看一下awk命令存放位置,awk建立一个软连接指向gawk,所以在系统中使用awk或是gawk都一样的
这里写图片描述

awk [ -F re] [parameter…] [‘prog’] [-f progfile][in_file…]

参数说明:
-F re:允许awk更改其字段分隔符。
parameter: 该参数帮助为不同的变量赋值。
‘prog’: awk的程序语句段。这个语句段必须用单拓号:’和’括起,以防被shell解释。这个程序语句段的标准形式为: ‘pattern {action}’ 。其中pattern参数可以是egrep正则表达式中的任何一个,它可以使用语法/re/再加上一些样式匹配技巧构成。与sed类似,你也可以使用”,”分开两样式以选择某个范围。关于匹配的细节,你可以参考附录,如果仍不懂的话,找本UNIX书学学grep和sed(本人是在学习ed时掌握匹配技术的)。action参数总是被大括号包围,它由一系统awk语句组成,各语句之间用”;”分隔。awk解释它们,并在pattern给定的样式匹配的记录上执行其操作。与shell类似,你也可以使用“#”作为注释符,它使“#”到行尾的内容成为注释,在解释执行时,它们将被忽略。你可以省略pattern和action之一,但不能两者同时省略,当省略pattern时没有样式匹配,表示对所有行(记录)均执行操作,省略action时执行缺省的操作――在标准输出上显示。
-f progfile:允许awk调用并执行progfile指定有程序文件。progfile是一个文本文件,他必须符合awk的语法。
in_file:awk的输入文件,awk允许对多个输入文件进行处理。值得注意的是awk不修改输入文件。如果未指定输入文件,awk将接受标准输入,并将结果显示在标准输出上。awk支持输入输出重定向。

-F fs 指定描绘一行中数据字段的文件分隔符
-f filename 指定读取程序的文件名
-v var=value 定义gawk程序中使用的变量和默认值
-mf N 指定数据文件中要处理的字段的最大数目
-mr N 指定数据文件中的最大记录大小

$0表示整行文本
$1表示文本行中的第一个数据字
$2表示文本行中的第二个数据字段
\ $n表示文本行中的第n个数据字段

这里写图片描述

在 ’ ‘中除了{ },还有BEGIN和END
这里写图片描述
awk工作流程是这样的:先执行BEGING,然后读取文件,按行逐一执行action,最后执行END操作。

pattern则是匹配条件
格式为 awk ‘/string/’ file
这里写图片描述

pattern+action的例子如下
这里写图片描述

在之前例子中{}中都有个print,这里可以使用print也可以使用printf,而printf与C语言中的printf实现几乎是一样的
这里写图片描述

特殊符号的输出
双引号
awk ‘{print ” \ ” “}’
单引号
awk ‘{print ” ’ \ ’ ’ “}’
这里写图片描述

在awk中有内置变量

ARGC               命令行参数个数
ARGV               命令行参数排列
ENVIRON            支持队列中系统环境变量的使用
FILENAME           awk浏览的文件名
FNR                浏览文件的记录数
FS                 设置输入域分隔符,等价于命令行 -F选项
NF                 浏览记录的域的个数
NR                 已读的记录数
OFS                输出域分隔符
ORS                输出记录分隔符
RS                 控制记录分隔符

>>>>输出file文件的2到7行内容
这里写图片描述

除了有内置变量,还有内置函数,比如说length(),计算字符个数。
>>>求出file文件的字符个数
这里写图片描述

另外awk中支持if,for,while等语言中的语句
>>>>找出file文件中第一列字符长度小于等于3的行并且只输出其第二列
>>>>找出file文件中从第二行到地起航之间,第一列字符长度小于等于3的行并且只输出其第二列
这里写图片描述

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值