LC1713. 得到子序列的最少操作次数(java - 动态规划)

265 篇文章 2 订阅
235 篇文章 0 订阅
本文介绍了如何通过将最长公共子序列问题转化为最长上升子序列问题,利用LIS的贪心解法和二分查找技术,以O(nlogn)的时间复杂度解决LC1713题目,即在给定数组中通过最少操作使目标序列成为子序列。
摘要由CSDN通过智能技术生成

LC1713. 得到子序列的最少操作次数

题目描述

难度 - 困难
LC1713.得到子序列的最少操作次数

给你一个数组 target ,包含若干 互不相同 的整数,以及另一个整数数组 arr ,arr 可能 包含重复元素。
每一次操作中,你可以在 arr 的任意位置插入任一整数。比方说,如果 arr = [1,4,1,2] ,那么你可以在中间添加 3 得到 [1,4,3,1,2] 。你可以在数组最开始或最后面添加整数。
请你返回 最少 操作次数,使得 target 成为 arr 的一个子序列。
一个数组的 子序列 指的是删除原数组的某些元素(可能一个元素都不删除),同时不改变其余元素的相对顺序得到的数组。比方说,[2,7,4] 是 [4,2,3,7,2,1,4] 的子序列(加粗元素),但 [2,4,2] 不是子序列。

示例 1:
输入:target = [5,1,3], arr = [9,4,2,3,4]
输出:2
解释:你可以添加 5 和 1 ,使得 arr 变为 [5,9,4,1,2,3,4] ,target 为 arr 的子序列。

示例 2:
输入:target = [6,4,8,1,3,2], arr = [4,7,6,2,3,8,6,1]
输出:3

提示:
1 <= target.length, arr.length <= 10^5
1 <= target[i], arr[i] <= 10^9
target 不包含任何重复元素。
在这里插入图片描述

LIS 动态规划 + 二分法

为了方便,我们令 target 长度为 n,arr 长度为 m,target 和 arr 的最长公共子序列长度为 max,不难发现最终答案为 n−max。
因此从题面来说,这是一道最长公共子序列问题(LCS)。
但朴素求解 LCS 问题复杂度为 O(n∗m),使用状态定义「f[i][j] 为考虑 a 数组的前 i 个元素和 b 数组的前 j 个元素的最长公共子序列长度为多少」进行求解。
而本题的数据范围为 10^5,使用朴素求解 LCS 的做法必然超时。
一个很显眼的切入点是 target 数组元素各不相同,当 LCS 问题增加某些条件限制之后,会存在一些很有趣的性质。
其中一个经典的性质就是:当其中一个数组元素各不相同时,最长公共子序列问题(LCS)可以转换为最长上升子序列问题(LIS)进行求解。同时最长上升子序列问题(LIS)存在使用「维护单调序列 + 二分」的贪心解法,复杂度为 O(nlog⁡n)。
因此本题可以通过「抽象成 LCS 问题」->「利用 target数组元素各不相同,转换为 LIS 问题」->「使用 LIS 的贪心解法」,做到 O(nlog⁡n) 的复杂度。

朴素的 LIS 问题求解,我们需要定义一个 f[i] 数组代表以 nums[i] 为结尾的最长上升子序列的长度为多少。
对于某个 f[i] 而言,我们需要往回检查 [0,i−1] 区间内,所有可以将 nums[i] 接到后面的位置 jjj,在所有的 f[j]+1中取最大值更新 f[i]。因此朴素的 LIS 问题复杂度是 O(n^2) 的。
LIS 的贪心解法则是维护一个额外 ggg 数组,g[len]=x 代表上升子序列长度为 lenlenlen 的上升子序列的「最小结尾元素」为 x。
整理一下,我们总共有两个数组:

  1. f 动规数组:与朴素 LIS 解法的动规数组含义一致。f[i]f[i]f[i] 代表以 nums[i] 为结尾的上升子序列的最大长度;
  2. g 贪心数组:g[len]=x代表上升子序列长度为 len 的上升子序列的「最小结尾元素」为 x。

由于我们计算 f[i] 时,需要找到满足 nums[j]<nums[i],同时取得最大 f[j] 的位置 j。

我们期望通过 g 数组代替线性遍历。
显然,如果 g 数组具有「单调递增」特性的话,我们可以通过「二分」找到符合 g[idx]<nums[i] 分割点 idxi(下标最大),即利用 O(log⁡n) 复杂度找到最佳转移位置。

代码演示

class Solution {
     public int minOperations(int[] target , int[] arr) {
        Map<Integer, Integer> map = new HashMap();
        int Tlen = target.length, Alen = arr.length;
        //1:target的元素和对应下标 装入map
        for(int i = 0; i < Tlen; i++) 
            map.put(target[i], i);
        
        //2:在arr中寻找相等的值的下标装入下标数组
        int[] index = new int[Alen];
        int p = 0;
        for(int i = 0; i < Alen; i++){
            if(map.containsKey(arr[i])) 
                index[p++] = map.get(arr[i]);
        }
        //3:直接调用处理最长递增公共子串代码(之前做过,这里赋值过来,偷懒)
        int uplen = lengthOfLIS(index,p);
        return Tlen - uplen;
    }
     public int lengthOfLIS(int[] nums,int n){
        if(n == 0) return 0;
        int res = 1;
        int[] dp = new int[n];
        dp[0] = nums[0];
        for(int num:nums){
            int i = 0,j = res;
            while(i < j){
                int mid = (i + j)>>1;
                if(dp[mid] >= num) j = mid;
                else i = mid + 1;
            }
            dp[i] = num;
            if(j == res) res++;
        }
        return res;
    }

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值