一、实验目的
掌握JPEG编解码系统的基本原理。初步掌握复杂的数据压缩算法实现,并能根据理论分析需要实现所对应数据的输出。
二、实验原理
1、JPEG编解码原理
JPEG编码的过程如上图所示。解码是编码的逆过程。
(1)零偏置电平下移
- 对于灰度级是
2
n
2^{n}
2n的像素,通过减去
2
n
−
1
2^{n-1}
2n−1,将无符号的整数值变成有符号数。
对于n=8,即将0-255的值域,通过减去128, 转换为值域在-128~127之间的值。 - 目的:使像素的绝对值出现3位10进制的概率大大减少,提高编码效率。
(2)8×8 DCT变换
对每个单独的彩色图像分量,把整个分量图像分成8×8的图像块,并且这些图象块中的每一个都使用其自己的离散余弦变换单独编码,变换后各分量之间的相关性去除。
正交变换的实质可看作基底函数的分解,如下图所示。
这里是64个余弦函数,通过系数加权,它们可以组合成任何8×8的图像。我们需要做的是计算每个余弦波的系数。左上角全白的是直流系数即DC系数,其它是交流系数即AC系数。从左上角到右下角依次从低频部分到高频部分,由于高频余弦波对图像的贡献不大,通过去除高频部分,使图像空间得到压缩,去除高频部分的过程称为量化。
(3)量化器
- 量化步距是按照系数①所在的位置,②颜色分量 来确定。
- 因为人眼对亮度信号比对色差信号更敏感,因此使用了两种量化表:亮度量化值和色差量化值。
- 根据人眼的视觉特性(对低频敏感,对高频不太敏感)对低频分量采取较细的量化,对高频分量采取较粗的量化。
- 在JPEG标准中,不同的压缩器将根据感觉使用不同的量化表,我们要做的是将每个系数除以相应的量化值,然后四舍五入到最接近的整数。
基于人的生理感知阈值实验,建议的量化表如下图所示。
- 真正的量化表=缩放因子×基本量化表,缩放因子由质量因子决定,质量因子越高越接近原图,压缩率越小。
质量因子≤ 50:缩放因子= 50 / 质量因子;
质量因子> 50:缩放因子 = 2 – 质量 因子/ 50
(4)DC系数差分编码
- 8×8图像块经过DCT变换之后得到的DC直流系数有两个特点:
➢ 系数的数值比较大
➢ 相邻8×8图像块的DC系数值变化不大:冗余
根据这个特点,JPEG算法使用了差分脉冲调制编码(DPCM)技术,对相邻图像块之间量化DC系数的差值DIFF进行编码:
D
I
F
F
k
=
D
C
k
−
D
C
k
−
1
D I F F_{k}=D C_{k}-D C_{k-1}
DIFFk=DCk−DCk−1
之后,对DIFF进行Huffman编码。
(5)AC系数游程编码
- 由于经DCT变换后,系数大多数集中在左上角,即低频分量区,因此采用Z字形按频率的高低顺序读出,可以出现很多连零的机会。可以使用游程编码。尤其在最后,如果都是零,给出EOB (End of Block)即可,如下图所示。
- 游程编码在JPEG和MPEG编码中规定为:(run, level)
➢ 表示连续run个0,后面跟值为level的系数
➢ 如:0,2,0,0,3,0,-4,0,0,0,-6,0,0,5,7
➢ 表示为(1, 2), (2, 3) ,… - 编码:
➢ Run: 最多15个,用4位表示RRRR;
➢ Level:类似DC,分成16个类别,用4位表示SSSS表示类别号,类内索引;
➢ 之后对(RRRR, SSSS)联合用Huffman编码;
➢ 对类内索引用定长码编码。
(6)Huffman编码
①DC系数的Huffman编码
对DIFF用Huffman编码:分成类别,类似指数Golomb编码
➢ 类别ID:一元码编码
➢ 类内索引:采用定长码
例:DC=8,上一DC=5,则DIFF=8-5=3,类别ID=2,类内索引=3,则码流=10011。
②AC系数的Huffman编码
对于任何一个RLE的数据对,都可以表示成(RRRR,SSSS)的形式。其中前面的0-16采用自然码RRRR,后面的SSSS则是与DC一致的Huffman分组的编码方式,存储索引。放到码流里的是其组内编码。
- ZRL:表示16个0
- 0,2,0,0,3,0,-4,0,0,0,-6,0,0,5,7,…
2、JPEG文件格式
(1)Segment 的组织形式
JPEG 在文件中以 Segment 的形式组织,它具有以下特点:
- 均以 0xFF 开始,后跟 1 byte 的 Marker 和 2 byte 的 Segment length(包含表示Length 本身所占用的 2 byte,不含“0xFF” + “Marker” 所占用的 2 byte);
- 采用 Motorola 序(相对于 Intel 序),即保存时高位在前,低位在后;
- Data 部分中,0xFF 后若为 0x00,则跳过此字节不予处理;
(2)字段介绍
SOI,Start of Image,图像开始
APP0,Application,应用程序保留标记0
DQT,Define Quantization Table,定义量化表
SOF0,Start of Frame,帧图像开始
DHT,Define Huffman Table,定义哈夫曼表
SOS,Start of Scan,扫描开始 12字节
EOI,End of Image,图像结束 2字节
①SOI & EOI
- SOI ,Start of Image, 图像开始
标记代码 2字节 固定值0xFFD8 - EOI,End of Image, 图像结束 2字节
标记代码 2字节 固定值0xFFD9
②APP0 应用程序保留标记0
标记代码 2字节 固定值0xFFE0
包含9个具体字段:
- 数据长度 2字节 9个字段的总长度
- 标识符 5字节 固定值0x4A46494600,即字符串“JFIF0”
- 版本号 2字节 一般是0x0102,表示JFIF的版本号1.2
- X和Y的密度单位 1字节 只有三个值可选 0:无单位;1:点数/英寸;2:点数/厘米
- X方向像素密度 2字节 取值范围未知
- Y方向像素密度 2字节 取值范围未知
- 缩略图水平像素数目 1字节 取值范围未知
- 缩略图垂直像素数目 1字节 取值范围未知
- 缩略图RGB位图 长度可能是3的倍数 缩略图RGB位图数据
③DQT 定义量化表
- 标记代码 2字节 固定值0xFFDB
- 包含9个具体字段:
a.数据长度 2字节 字段a和多个字段b的总长度
b.量化表 数据长度-2字节
a) 精度及量化表ID 1字节
高4位:精度,只有两个可选值 0:8位;1:16位
低4位:量化表ID,取值范围为0~3
b) 表项 (64×(精度+1))字节
例如8位精度的量化表,其表项长度为64×(0+1)=64字节 - 本标记段中,字段b可以重复出现,表示多个量化表,但最多只能出现4次。
④SOF0 帧图像开始
- 标记代码 2字节 固定值0xFFC0
- 包含9个具体字段:
a.数据长度 2字节 ①~⑥六个字段的总长度
b.精度 1字节 每个数据样本的位数
通常是8位,一般软件都不支持 12位和16位
c.图像高度 2字节 图像高度(单位:像素)
d.图像宽度 2字节 图像宽度(单位:像素)
e.颜色分量数 1字节 只有3个数值可选
1:灰度图;3:YCrCb或YIQ;4:CMYK
而JFIF中使用YCrCb,故这里颜色分量数恒为3
f.颜色分量信息 颜色分量数×3字节(通常为9字节)
a)颜色分量ID 1字节
b)水平/垂直采样因子 1字节
高4位:水平采样因子 低4位:垂直采样因子
c) 量化表 1字节 当前分量使用的量化表的ID
⑤DHT,定义哈夫曼表
-
标记代码 2字节 固定值0xFFC4
-
包含2个具体字段:
a. 数据长度 2字节
b.huffman表 数据长度-2字节 -
表ID和表类型 1字节
高4位:类型,只有两个值可选 0:DC直流;1:AC交流
低4位:哈夫曼表ID,注意,DC表和AC表分开编码 -
不同位数的码字数量 16字节
-
编码内容 16个不同位数的码字数量之和(字节)
本标记段中,字段b可以重复出现(一般4次),也可以只出现1次。
⑥SOS,扫描开始
-
标记代码 2字节 固定值0xFFDA
-
包含2个具体字段:
a.数据长度 2字节 a~d两个字段的总长度
b.颜色分量数 1字节 应该和SOF中的字段⑤的值相同,即:1:灰度图是;3: YCrCb或YIQ;4:CMYK。
c.颜色分量信息
a) 颜色分量ID 1字节
b) 直流/交流系数表号 1字节
高4位:直流分量使用的哈夫曼树编号
低4位:交流分量使用的哈夫曼树编号
d.压缩图像数据
a)谱选择开始 1字节 固定值0x00
b)谱选择结束 1字节 固定值0x3F
c)谱选择 1字节 在基本JPEG中总为00
3、JPEG解码流程
(1)读取文件
(2)解析segmentmarker:依次解析出SOI、APP0、DCT、SCF0、DHT、SOS、EOI
解析SOI
解析APP0
- 检查标识“JFIF”及版本
- 得到一些参数
解析DCT
- 得到量化表长度(可能包含多张量化表)
- 得到量化表的精度
- 得到及检查量化表的序号(只能是 0-3)
- 得到量化表内容(64 个数据)
解析SCF0
- 得到每个 sample 的比特数、长宽、颜色分量数
- 得到每个颜色分量的 ID、水平采样因子、垂直采样因子、使用的量化表序号(与 DQT 中序号对应)
- 解析 DHT
解析DHT
- 得到 Huffman 表的类型(AC、DC)、序号
- 依据数据重建 Huffman 表
解析SOS
- 得到解析每个颜色分量的 DC、AC 值所使用的 Huffman 表序号(与 DHT 中序号对应)
(3)依据每个分量的水平采样、垂直采样因子计算MCU(微控制单元,即RAM,即要开辟的图像内存)的大小,并得到每个MCU中8*8宏块的个数。
(4)对每个MCU解码:对每个宏块进行huffman解码得到DCT系数,进行IDCT得到变换之前的数据。
(5)解析到EOI,解码结束
(6)将得到的Y、Cb、Cr转换成需要的色彩空间并保存。
三、实验过程
逐步调试JPEG解码器程序。将输入的JPG文件进行解码,将输出文件保存为可供YUVViewer观看的YUV文件。
输入文件如下。
工程中有三个头文件:stdint.h、tinypeg.h、tinyjpeg-internal.h以及三个.c文件:jidctflc.c、loadjpeg.c、tinyjpeg.c。
1、关键代码分析
(1)tinyjpeg-internal.h中的结构体
①struct huffman_table
创建一个快速查找表用于快速解码,如果查找失败则用慢速查找表。目的是加快解码过程。
struct huffman_table
{
/*快速查表,用HUFFMAN_HASH_SIZE个比特可以快速找到符号,如果符号<0,那么需要查看慢速查找表 */
short int lookup[HUFFMAN_HASH_SIZE];
/* 给出码字长度,输出权值对应的码长 */
unsigned char code_size[HUFFMAN_HASH_SIZE];
/*给出在慢速查找表中没有出现的码字,计算256值是否足以存储所有值*/
uint16_t slowtable[16-HUFFMAN_HASH_NBITS][256];
};
②struct component
用于存储一个MCU块的信息,每处理一个新的MCU块后,信息都会更新。用它来保存一些解码过程中需要用到的信息,如量化表、前一个直流的值和当前MCU的DCT块从而使解码更加简单。
struct component
{
unsigned int Hfactor; /* 水平采样情况 */
unsigned int Vfactor; /* 垂直采样情况 */
float *Q_table; /* 指向量化表 */
struct huffman_table *AC_table; /* 指向直流huffman_table */
struct huffman_table *DC_table; /* 指向交流huffman_table */
short int previous_DC; /* 前一个直流系数 */
short int DCT[64]; /* DCT系数 */
#if SANITY_CHECK
unsigned int cid;
#endif
};
③struct jdec_private
该结构体是解码过程中频繁用到的东西,起到整合基本信息、连接各个部分的作用。它用于存储图像的基本信息和各通道信息。包含了前两个结构体的内容。由于是采用指针方式,并不占用额外的空间。
struct jdec_private
{
/* 公有变量 */
uint8_t *components[COMPONENTS];
unsigned int width, height; /* 图像大小 */
unsigned int flags;
/* 私有变量 */
const unsigned char *stream_begin, *stream_end;
unsigned int stream_length;
const unsigned char *stream; /* 指向当前流的指针 */
unsigned int reservoir, nbits_in_reservoir;
struct component component_infos[COMPONENTS]; /* 各通道信息 */
float Q_tables[COMPONENTS][64]; /* 三通道量化表 */
struct huffman_table HTDC[HUFFMAN_TABLES]; /* 直流huffman tables */
struct huffman_table HTAC[HUFFMAN_TABLES]; /* 交流huffman tables */
int default_huffman_table_initialized;
int restart_interval;
int restarts_to_go; /* 剩余MCU */
int last_rst_marker_seen; /* Rst marker每次递增 */
/* IDCT之后用于存储每个component的临时空间 */
uint8_t Y[64*4], Cr[64], Cb[64];
jmp_buf jump_state;
/* 内部指针用于颜色空间转换,请勿修改!!! */
uint8_t *plane[COMPONENTS];
};
(2)解析函数
①convert_one_image( )
打开输入输出文件,初始化jdec结构体,获得文件参数信息,主要调用tinyjpeg_parse_header()解码jpeg图像,最后调用write_yuv()*写入yuv文件。
int convert_one_image(const char *infilename, const char *outfilename, int output_format)
{
FILE *fp;
unsigned int length_of_file;
unsigned int width, height;
unsigned char *buf;
struct jdec_private *jdec;
unsigned char *components[3];
/* Load the Jpeg into memory */
fp = fopen(infilename, "rb");
if (fp == NULL)
exitmessage("Cannot open filename\n");
length_of_file = filesize(fp);
buf = (unsigned char *)malloc(length_of_file + 4);
if (buf == NULL)
exitmessage("Not enough memory for loading file\n");
fread(buf, length_of_file, 1, fp);
fclose(fp);
/* Decompress it */
jdec = tinyjpeg_init();
if (jdec == NULL)
exitmessage("Not enough memory to alloc the structure need for decompressing\n");
if (tinyjpeg_parse_header(jdec, buf, length_of_file)<0)
exitmessage(tinyjpeg_get_errorstring(jdec));
/* Get the size of the image */
tinyjpeg_get_size(jdec, &width, &height);
snprintf(error_string, sizeof(error_string),"Decoding JPEG image...\n");
if (tinyjpeg_decode(jdec, output_format) < 0)
exitmessage(tinyjpeg_get_errorstring(jdec));
/*
* Get address for each plane (not only max 3 planes is supported), and
* depending of the output mode, only some components will be filled
* RGB: 1 plane, YUV420P: 3 planes, GREY: 1 plane
*/
tinyjpeg_get_components(jdec, components);
/* Save it */
switch (output_format)
{
case TINYJPEG_FMT_RGB24:
case TINYJPEG_FMT_BGR24:
write_tga(outfilename, output_format, width, height, components);
break;
case TINYJPEG_FMT_YUV420P://输出格式为yuv420
write_yuv(outfilename, width, height, components);
break;
case TINYJPEG_FMT_GREY://输出格式为灰度图
write_pgm(outfilename, width, height, components);
break;
}
/* Only called this if the buffers were allocated by tinyjpeg_decode() */
tinyjpeg_free(jdec);
/* else called just free(jdec); */
free(buf);
return 0;
}
②tinyjpeg_parse_header( )
控制指针移动,解析JPEG头文件,调用parse_JFIF()
int tinyjpeg_parse_header(struct jdec_private *priv, const unsigned char *buf, unsigned int size)
{
int ret;
/* Identify the file */
if ((buf[0] != 0xFF) || (buf[1] != SOI))//jpeg文件以SOI标识符为起点
snprintf(error_string, sizeof(error_string),"Not a JPG file ?\n");
priv->stream_begin = buf+2;//后移指针,跳过标识符
priv->stream_length = size-2;//数据流长度(去除标识符后)
priv->stream_end = priv->stream_begin + priv->stream_length;//定位到数据流末端
ret = parse_JFIF(priv, priv->stream_begin);
return ret;
}
③parse_JFIF( )
在到达SOS之前,循环调用parse_SOF()、parse_DQT()、parse_SOS()、parse_DHT()、parse_DRI()。
static int parse_JFIF(struct jdec_private *priv, const unsigned char *stream)
{
int chuck_len;
int marker;
int sos_marker_found = 0;
int dht_marker_found = 0;
const unsigned char *next_chunck;
/* Parse marker */
while (!sos_marker_found)
{
if (*stream++ != 0xff)//获取0xFF之后的字节,确定标识符类型
goto bogus_jpeg_format;
/* Skip any padding ff byte (this is normal) */
while (*stream == 0xff)
stream++;
marker = *stream++;
chuck_len = be16_to_cpu(stream);
next_chunck = stream + chuck_len;
switch (marker)
{
case SOF:
if (parse_SOF(priv, stream) < 0)
return -1;
break;
case DQT://量化表
if (parse_DQT(priv, stream) < 0)
return -1;
break;
case SOS:
if (parse_SOS(priv, stream) < 0)
return -1;
sos_marker_found = 1;
break;
case DHT:
if (parse_DHT(priv, stream) < 0)
return -1;
dht_marker_found = 1;
break;
case DRI:
if (parse_DRI(priv, stream) < 0)
return -1;
break;
default:
#if TRACE
fprintf(p_trace,"> Unknown marker %2.2x\n", marker);
fflush(p_trace);
#endif
break;
}
stream = next_chunck;
}
if (!dht_marker_found) {
#if TRACE
fprintf(p_trace,"No Huffman table loaded, using the default one\n");
fflush(p_trace);
#endif
build_default_huffman_tables(priv);
}
#ifdef SANITY_CHECK
if ( (priv->component_infos[cY].Hfactor < priv->component_infos[cCb].Hfactor)
|| (priv->component_infos[cY].Hfactor < priv->component_infos[cCr].Hfactor))
snprintf(error_string, sizeof(error_string),"Horizontal sampling factor for Y should be greater than horitontal sampling factor for Cb or Cr\n");
if ( (priv->component_infos[cY].Vfactor < priv->component_infos[cCb].Vfactor)
|| (priv->component_infos[cY].Vfactor < priv->component_infos[cCr].Vfactor))
snprintf(error_string, sizeof(error_string),"Vertical sampling factor for Y should be greater than vertical sampling factor for Cb or Cr\n");
if ( (priv->component_infos[cCb].Hfactor!=1)
|| (priv->component_infos[cCr].Hfactor!=1)
|| (priv->component_infos[cCb].Vfactor!=1)
|| (priv->component_infos[cCr].Vfactor!=1))
snprintf(error_string, sizeof(error_string),"Sampling other than 1x1 for Cr and Cb is not supported");
#endif
return 0;
bogus_jpeg_format:
#if TRACE
fprintf(p_trace,"Bogus jpeg format\n");
fflush(p_trace);
#endif
return -1;
}
④parse_*( )
parse_SOF()、parse_DQT()、parse_SOS()、parse_DHT()、parse_DRI()分别用于解析各字段。
(3)计算MCU
在此函数中,对每个块的水平和垂直采样情况进行解析,计算MCU。同时对不同MCU进行处理。
int tinyjpeg_decode(struct jdec_private *priv, int pixfmt)
{
unsigned int x, y, xstride_by_mcu, ystride_by_mcu;
unsigned int bytes_per_blocklines[3], bytes_per_mcu[3];
decode_MCU_fct decode_MCU;
const decode_MCU_fct *decode_mcu_table;
const convert_colorspace_fct *colorspace_array_conv;
convert_colorspace_fct convert_to_pixfmt;
if (setjmp(priv->jump_state))
return -1;
/* To keep gcc happy initialize some array */
bytes_per_mcu[1] = 0;
bytes_per_mcu[2] = 0;
bytes_per_blocklines[1] = 0;
bytes_per_blocklines[2] = 0;
decode_mcu_table = decode_mcu_3comp_table;
switch (pixfmt) {//根据不同的输出格式确定MCU
case TINYJPEG_FMT_YUV420P:
colorspace_array_conv = convert_colorspace_yuv420p;
if (priv->components[0] == NULL)
priv->components[0] = (uint8_t *)malloc(priv->width * priv->height);
if (priv->components[1] == NULL)
priv->components[1] = (uint8_t *)malloc(priv->width * priv->height/4);
if (priv->components[2] == NULL)
priv->components[2] = (uint8_t *)malloc(priv->width * priv->height/4);
bytes_per_blocklines[0] = priv->width;
bytes_per_blocklines[1] = priv->width/4;
bytes_per_blocklines[2] = priv->width/4;
bytes_per_mcu[0] = 8;
bytes_per_mcu[1] = 4;
bytes_per_mcu[2] = 4;
break;
case TINYJPEG_FMT_RGB24:
colorspace_array_conv = convert_colorspace_rgb24;
if (priv->components[0] == NULL)
priv->components[0] = (uint8_t *)malloc(priv->width * priv->height * 3);
bytes_per_blocklines[0] = priv->width * 3;
bytes_per_mcu[0] = 3*8;
break;
case TINYJPEG_FMT_BGR24:
colorspace_array_conv = convert_colorspace_bgr24;
if (priv->components[0] == NULL)
priv->components[0] = (uint8_t *)malloc(priv->width * priv->height * 3);
bytes_per_blocklines[0] = priv->width * 3;
bytes_per_mcu[0] = 3*8;
break;
case TINYJPEG_FMT_GREY:
decode_mcu_table = decode_mcu_1comp_table;
colorspace_array_conv = convert_colorspace_grey;
if (priv->components[0] == NULL)
priv->components[0] = (uint8_t *)malloc(priv->width * priv->height);
bytes_per_blocklines[0] = priv->width;
bytes_per_mcu[0] = 8;
break;
default:
#if TRACE
fprintf(p_trace,"Bad pixel format\n");
fflush(p_trace);
#endif
return -1;
}
xstride_by_mcu = ystride_by_mcu = 8;//初始化MCU宽高8px(4:4:4)
//若水平垂直采样因子均为1
if ((priv->component_infos[cY].Hfactor | priv->component_infos[cY].Vfactor) == 1) {
decode_MCU = decode_mcu_table[0];//MCU包含1个Y
convert_to_pixfmt = colorspace_array_conv[0];
#if TRACE
fprintf(p_trace,"Use decode 1x1 sampling\n");
fflush(p_trace);
#endif
} else if (priv->component_infos[cY].Hfactor == 1) {//若水平采样因子为1、垂直采样因子为2
decode_MCU = decode_mcu_table[1];//MCU包含2个Y
convert_to_pixfmt = colorspace_array_conv[1];
ystride_by_mcu = 16;//MCU高16px、宽8px
#if TRACE
fprintf(p_trace,"Use decode 1x2 sampling (not supported)\n");
fflush(p_trace);
#endif
} else if (priv->component_infos[cY].Vfactor == 2) {//若水平垂直采样因子均为2
decode_MCU = decode_mcu_table[3];//MCU包含4个Y
convert_to_pixfmt = colorspace_array_conv[3];
xstride_by_mcu = 16;//宽高均为16px
ystride_by_mcu = 16;
#if TRACE
fprintf(p_trace,"Use decode 2x2 sampling\n");
fflush(p_trace);
#endif
} else {//若水平采样因子为2、垂直采样因子为1
decode_MCU = decode_mcu_table[2];//MCU包含2个Y
convert_to_pixfmt = colorspace_array_conv[2];
xstride_by_mcu = 16;//MCU宽16px、高8px
#if TRACE
fprintf(p_trace,"Use decode 2x1 sampling\n");
fflush(p_trace);
#endif
}
resync(priv);
/* Don't forget to that block can be either 8 or 16 lines */
bytes_per_blocklines[0] *= ystride_by_mcu;
bytes_per_blocklines[1] *= ystride_by_mcu;
bytes_per_blocklines[2] *= ystride_by_mcu;
bytes_per_mcu[0] *= xstride_by_mcu/8;
bytes_per_mcu[1] *= xstride_by_mcu/8;
bytes_per_mcu[2] *= xstride_by_mcu/8;
/* 对每个像块进行解码 (size is 8x8, 8x16, or 16x16) */
for (y=0; y < priv->height/ystride_by_mcu; y++)
{
//trace("Decoding row %d\n", y);
priv->plane[0] = priv->components[0] + (y * bytes_per_blocklines[0]);
priv->plane[1] = priv->components[1] + (y * bytes_per_blocklines[1]);
priv->plane[2] = priv->components[2] + (y * bytes_per_blocklines[2]);
for (x=0; x < priv->width; x+=xstride_by_mcu)
{
decode_MCU(priv);
convert_to_pixfmt(priv);
priv->plane[0] += bytes_per_mcu[0];
priv->plane[1] += bytes_per_mcu[1];
priv->plane[2] += bytes_per_mcu[2];
if (priv->restarts_to_go>0)
{
priv->restarts_to_go--;
if (priv->restarts_to_go == 0)
{
priv->stream -= (priv->nbits_in_reservoir/8);
resync(priv);
if (find_next_rst_marker(priv) < 0)
return -1;
}
}
}
}
#if TRACE
fprintf(p_trace,"Input file size: %d\n", priv->stream_length+2);
fprintf(p_trace,"Input bytes actually read: %d\n", priv->stream - priv->stream_begin + 2);
fflush(p_trace);
#endif
return 0;
}
(4)MCU解码
对每个MCU进行解码(依照各分量水平、垂直采样因子对 MCU中每个分量宏块解码)
①对每个宏块进行 Huffman解码,得到DCT系数
②对每个宏块的 DCT系数进行 IDCT,得到 Y、Cb 、Cr
③遇到 Segment Marker RST时,清空之前的DC 、DCT系数
以decode_MCU_2x1_1plane( )为例。
①decode_MCU_2x1_1plane( )
/*
* Decode a 2x1
* .-------.
* | 1 | 2 |
* `-------'
*/
static void decode_MCU_2x1_1plane(struct jdec_private *priv)
{
// Y
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y, 16);//块1
process_Huffman_data_unit(priv, cY);
IDCT(&priv->component_infos[cY], priv->Y+8, 16);//块2
// Cb
process_Huffman_data_unit(priv, cCb);
// Cr
process_Huffman_data_unit(priv, cCr);
}
②process_Huffman_data_unit( )
对包含DCT系数的单个块进行Huffman解码。
/**
*
* Decode a single block that contains the DCT coefficients.
* The table coefficients is already dezigzaged at the end of the operation.
*
*/
static void process_Huffman_data_unit(struct jdec_private *priv, int component)
{
unsigned char j;
unsigned int huff_code;
unsigned char size_val, count_0;
struct component *c = &priv->component_infos[component];
short int DCT[64];
/* Initialize the DCT coef table */
memset(DCT, 0, sizeof(DCT));
/* DC coefficient decoding */
huff_code = get_next_huffman_code(priv, c->DC_table);
//trace("+ %x\n", huff_code);
if (huff_code) {
//解码得到当前块与前一块DC系数的差值
get_nbits(priv->reservoir, priv->nbits_in_reservoir, priv->stream, huff_code, DCT[0]);
DCT[0] += c->previous_DC;//差值与前一DC系数相加,得到当前块DC系数
c->previous_DC = DCT[0];//更新前一DC系数值
} else {
DCT[0] = c->previous_DC;
}
/* AC coefficient decoding */
j = 1;
while (j<64)
{
huff_code = get_next_huffman_code(priv, c->AC_table);
//trace("- %x\n", huff_code);
size_val = huff_code & 0xF;
count_0 = huff_code >> 4;
if (size_val == 0)
{ /* RLE */
if (count_0 == 0)
break; /* EOB found, go out */
else if (count_0 == 0xF)
j += 16; /* skip 16 zeros */
}
else
{
j += count_0; /* skip count_0 zeroes */
if (__unlikely(j >= 64))
{
snprintf(error_string, sizeof(error_string), "Bad huffman data (buffer overflow)");
break;
}
get_nbits(priv->reservoir, priv->nbits_in_reservoir, priv->stream, size_val, DCT[j]);
j++;
}
}
for (j = 0; j < 64; j++)
c->DCT[j] = DCT[zigzag[j]];
}
(5)色彩空间转换
以YCrCb -> YUV420P (2x1)为例。
/**
* YCrCb -> YUV420P (2x1)
* .-------.
* | 1 | 2 |
* `-------'
*/
static void YCrCB_to_YUV420P_2x1(struct jdec_private *priv)
{
unsigned char *p;
const unsigned char *s, *y1;
unsigned int i;
p = priv->plane[0];
y1 = priv->Y;
for (i=0; i<8; i++)
{
memcpy(p, y1, 16);
p += priv->width;
y1 += 16;
}
p = priv->plane[1];
s = priv->Cb;
for (i=0; i<8; i+=2)
{
memcpy(p, s, 8);
s += 16; /* Skip one line */
p += priv->width/2;
}
p = priv->plane[2];
s = priv->Cr;
for (i=0; i<8; i+=2)
{
memcpy(p, s, 8);
s += 16; /* Skip one line */
p += priv->width/2;
}
}
2、生成YUV图像
在保存yuv文件的函数write_yuv( )中末尾处添加如下代码:
snprintf(temp, 1024, "%s.YUV", filename);
F = fopen(temp, "wb");
fwrite(components[0], width, height, F);//写入Y
fwrite(components[1], width * height / 4, 1, F);//写入U
fwrite(components[2], width * height / 4, 1, F);//写入V
fclose(F);
生成如下文件:
用YUVViewer打开output.YUV,如下图所示:
3、TRACE的目的和含义
trace定义在tinyjpeg.h末尾处。
trace的目的主要是输出中间变量或者错误信息,有利于方便高效地理解程序运行的过程及排查错误。
(1)trace的打开和关闭
#define TRACE 1//0为关闭,1为开启
#define TRACEFILE "trace_jpeg.txt"//输出文件名
(2)各TRACE位置及输出内容
若需输出中间变量或错误信息,仅需在对应位置按照需求修改对应内容即可。
#if TRACE
/**/
fflush(p_trace);
#endif
①以txt文件输出所有的量化矩阵
在tinyjpeg.h中添加如下声明:
FILE* quantization_table;
在主程序中为量化矩阵分配文件指针。
#if TRACE
quantization_table = fopen("quantization_table.txt", "w+");
if (quantization_table == NULL)
{
printf("quantization_table file open error!");
}
#endif
在parse_DQT( )添加如下代码:
static int parse_DQT(struct jdec_private* priv, const unsigned char* stream)
{
...
#if SANITY_CHECK
if (qi >> 4)
snprintf(error_string, sizeof(error_string), "16 bits quantization table is not supported\n");
if (qi > 4)
snprintf(error_string, sizeof(error_string), "No more 4 quantization table is supported (got %d)\n", qi);
#endif
#if TRACE
fprintf(quantization_table, "original quantization table [%d]\n", qi);
#endif
table = priv->Q_tables[qi];
build_quantization_table(table, stream);
stream += 64;
#if TRACE
fprintf(quantization_table, "scaled quantization table [%d]\n", qi);
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j)
if (j == 7) fprintf(quantization_table, "%10.3f\n", table[i * 8 + j]);
else fprintf(quantization_table, "%10.3f\t", table[i * 8 + j]);
#endif
...
}
在build_quantization_table( )中添加如下代码:
static void build_quantization_table(float* qtable, const unsigned char* ref_table)
{
...
for (i = 0; i < 8; i++) {
for (j = 0; j < 8; j++) {
*qtable++ = ref_table[*zz++] * aanscalefactor[i] * aanscalefactor[j];
}
}
#if TRACE
for (int i = 0; i < 8; ++i)
for (int j = 0; j < 8; ++j)
if (j == 7) fprintf(quantization_table, "%10d\n", (int)ref_table[zigzag[i * 8 + j]]);
else fprintf(quantization_table, "%10d\t", (int)ref_table[zigzag[i * 8 + j]]);
#endif
}
结果输出为文件quantization_table.txt:
②以txt文件输出所有的HUFFMAN码表
在parse_DHT中已有如下代码:
static int parse_DHT(struct jdec_private* priv, const unsigned char* stream)
{
...
#if TRACE
fprintf(p_trace, "Huffman table %s[%d] length=%d\n", (index & 0xf0) ? "AC" : "DC", index & 0xf, count);
fflush(p_trace);
#endif
...
}
在build_huffman_table中已有如下代码:
static void build_huffman_table(const unsigned char* bits, const unsigned char* vals, struct huffman_table* table)
{
...
#if TRACE
fprintf(p_trace, "val=%2.2x \tcode=%8.8x \tcodesize=%2.2d\n", val, code, code_size);
fflush(p_trace);
#endif
...
}
结果输出在trace_jpeg.txt,同时依照quantization_table.txt方式将结果存放在新建文件中,只需将p_trace修改为新文件指针。由于截图过长,以下将内容展示。
- 直流码表0:
Huffman table DC[0] length=10
val=04 code=00000000 codesize=02
val=05 code=00000001 codesize=02
val=06 code=00000002 codesize=02
val=03 code=00000006 codesize=03
val=02 code=0000000e codesize=04
val=01 code=0000001e codesize=05
val=00 code=0000003e codesize=06
val=09 code=0000007e codesize=07
val=07 code=000000fe codesize=08
val=08 code=000001fe codesize=09
- 直流码表1:
Huffman table DC[1] length=11
val=04 code=00000000 codesize=02
val=05 code=00000001 codesize=02
val=06 code=00000002 codesize=02
val=03 code=00000006 codesize=03
val=02 code=0000000e codesize=04
val=01 code=0000001e codesize=05
val=00 code=0000003e codesize=06
val=07 code=0000007e codesize=07
val=0a code=000000fe codesize=08
val=09 code=000001fe codesize=09
val=08 code=000003fe codesize=10
- 交流码表0:
Huffman table AC[0] length=43
val=00 code=00000000 codesize=02
val=01 code=00000002 codesize=03
val=03 code=00000003 codesize=03
val=02 code=00000008 codesize=04
val=04 code=00000009 codesize=04
val=05 code=0000000a codesize=04
val=11 code=0000000b codesize=04
val=21 code=0000000c codesize=04
val=22 code=0000001a codesize=05
val=31 code=0000001b codesize=05
val=61 code=0000001c codesize=05
val=06 code=0000003a codesize=06
val=12 code=0000003b codesize=06
val=a1 code=0000003c codesize=06
val=32 code=0000007a codesize=07
val=41 code=0000007b codesize=07
val=62 code=0000007c codesize=07
val=13 code=000000fa codesize=08
val=51 code=000000fb codesize=08
val=23 code=000001f8 codesize=09
val=42 code=000001f9 codesize=09
val=71 code=000001fa codesize=09
val=81 code=000001fb codesize=09
val=91 code=000001fc codesize=09
val=15 code=000003fa codesize=10
val=52 code=000003fb codesize=10
val=63 code=000003fc codesize=10
val=07 code=000007fa codesize=11
val=14 code=000007fb codesize=11
val=33 code=000007fc codesize=11
val=53 code=000007fd codesize=11
val=16 code=00000ffc codesize=12
val=43 code=00000ffd codesize=12
val=08 code=00001ffc codesize=13
val=b1 code=00001ffd codesize=13
val=34 code=00003ffc codesize=14
val=c1 code=00003ffd codesize=14
val=24 code=00007ffc codesize=15
val=d1 code=0000fffa codesize=16
val=09 code=0000fffb codesize=16
val=72 code=0000fffc codesize=16
val=f0 code=0000fffd codesize=16
val=a2 code=0000fffe codesize=16
- 交流码表1
Huffman table AC[1] length=28
val=00 code=00000000 codesize=02
val=04 code=00000001 codesize=02
val=01 code=00000004 codesize=03
val=02 code=00000005 codesize=03
val=03 code=00000006 codesize=03
val=31 code=0000001c codesize=05
val=61 code=0000001d codesize=05
val=11 code=0000003c codesize=06
val=12 code=0000003d codesize=06
val=05 code=0000007c codesize=07
val=21 code=0000007d codesize=07
val=13 code=000000fc codesize=08
val=14 code=000000fd codesize=08
val=41 code=000000fe codesize=08
val=51 code=000001fe codesize=09
val=06 code=000007fc codesize=11
val=22 code=000007fd codesize=11
val=32 code=000007fe codesize=11
val=07 code=00001ffc codesize=13
val=15 code=00001ffd codesize=13
val=42 code=00001ffe codesize=13
val=08 code=0000fff8 codesize=16
val=71 code=0000fff9 codesize=16
val=23 code=0000fffa codesize=16
val=24 code=0000fffb codesize=16
val=33 code=0000fffc codesize=16
val=81 code=0000fffd codesize=16
val=a1 code=0000fffe codesize=16
4、输出DC图像和某个AC图像并统计其概率分布
(1)输出DC、AC图像
在得到的DCT数组中存储了图像DCT变换后的数据,将这些数据输出即可,其中DCT[0]为图像的直流分量,其余为交流分量,实验中取DCT[1]作为输出的AC分量值。
对于8x8的宏块,取每一个宏块DCT变换后左上角的第一个值为DC分量,输出图像的大小为128x128(原图像为1024x1024)。
为了便于观察,将DC分量的值(范围-512-512)调整到 0~255。AC分量的值较小,+128处理。
在程序中添加输出DC、AC图像的代码。
在tinyjpeg.h中添加全局变量:
FILE *DCfile;
FILE *ACfile;
在main函数中添加如下代码:
DCfile = fopen("dc.yuv","w");
ACfile = fopen("ac.yuv", "w");
........
fclose(DCfile);
fclose(ACfile);
在tinyjpeg_decode函数中添加如下代码:
int tinyjpeg_decode(struct jdec_private *priv, int pixfmt)
{
unsigned char *DCbuf, *ACbuf;
unsigned char *uvbuf = 128;
int count=0;
...
decode_MCU(priv);
DCbuf= (unsigned char)((priv->component_infos->DCT[0] + 512.0) / 4 + 0.5);
ACbuf= (unsigned char)(priv->component_infos->DCT[1] + 128);
fwrite(&DCbuf, 1, 1,DCfile);
fwrite(&ACbuf, 1, 1,ACfile);
count++;
....
for (int j = 0; j < count *0.25 * 2; j++)
{
fwrite(&uvbuf, sizeof(unsigned char), 1, DCfile);
fwrite(&uvbuf, sizeof(unsigned char), 1, ACfile);
}
return 0;
}
用YUVViewer打开dc.yuv和ac.yuv,如下图所示:
(2)DC、AC图像的概率分布图
DC和AC的概率分布图如下所示:
python代码如下所示:
import numpy as np
import matplotlib.pyplot as plt
import math
f = open(r"dc.yuv", "rb")
data = f.read()
f.close()
data = [int(x) for x in data]
data_Y=[]
for i in range(0,128*128):
data_Y.append(data[i])
count_Y=np.zeros(255)
for i in data_Y:
count_Y[i-1]=count_Y[i-1]+1
for i in range(0,255):
count_Y[i] = count_Y[i] / (128*128)
plt.plot(count_Y)
plt.title("DC Frequency")
plt.grid()
plt.show()
四、实验问题
1、问题:PDB格式不兼容
解决方法:点击 生成-清理解决方案。
参考
JPEG编解码原理及C++调试
JPEG原理分析及JPEG解码器的解析
JPEG编码原理与解码分析
利用python分析RGB图像及YUV图像三个通道的概率分布并求其熵