[几何算法]计算任意多边形的面积

本文介绍了如何通过鞋带定理计算平面多边形面积,给出了C#代码示例,并提到处理曲线多边形的方法是将其离散化为顶点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求任意平面多边形的面积

通过鞋带定理,在已知多边形各顶点的情况下,可以快速计算出其面积

问题分析

设一个多边形顶点按逆时针或顺时针顺序为 P 1 ( x 1 , y 1 ) , P 2 ( x 2 , y 2 ) , … , P n ( x n , y n ) P_1(x_1, y_1), P_2(x_2, y_2), \ldots, P_n(x_n, y_n) P1(x1,y1),P2(x2,y2),,Pn(xn,yn),其中 P 1 = P n + 1 P_1 = P_{n+1} P1=Pn+1 (首尾相连形成闭合多边形)。根据鞋带定理,该多边形的面积 ( A ) 可以通过以下公式计算:

A = 1 2 ∣ ( x 1 y 2 − y 1 x 2 ) + ( x 2 y 3 − y 2 x 3 ) + ⋯ + ( x n − 1 y n − y n − 1 x n ) + ( x n y 1 − y n x 1 ) ∣   A = \frac{1}{2} |(x_1y_2 - y_1x_2) + (x_2y_3 - y_2x_3) + \cdots + (x_{n-1}y_n - y_{n-1}x_n) + (x_ny_1 - y_nx_1)|\ A=21(x1y2y1x2)+(x2y3y2x3)++(xn1ynyn1xn)+(xny1ynx1) 

进一步简化该公式可以得到:

A = 1 2 ∣ ( x 1 + x 2 ) ( y 1 − y 2 ) + ( x 2 + x 3 ) ( y 2 − y 3 ) + ⋯ + ( x n − 1 + x n ) ( y n − 1 − y n ) + ( x n + x 1 ) ( y n − y 1 ) ∣ A = \frac{1}{2} |(x_1+x_2)(y_1-y_2) + (x_2+x_3)(y_2-y_3) + \cdots + (x_{n-1}+x_n)(y_{n-1}-y_n) + (x_n+x_1)(y_n-y_1)| A=21(x1+x2)(y1y2)+(x2+x3)(y2y3)++(xn1+xn)(yn1yn)+(xn+x1)(yny1)

该定理实质上是将多边形面积,转化为多个小三角形的面积之和,可以使用数学归纳法进行证明,具体不过多赘述。

代码实现

C#

public static double PolygonArea(point[] points)
{
    var cnt = points.Count;
    if (cnt < 3)
        return 0;

    double res = 0;
    for (int i = 0,j=cnt-1; i < cnt; i++) 
    {
        res += (points[j].X + points[i].X) * (points[j].Y - points[i].Y);
        j = i;
    }

    return Math.Abs(0.5*res);
}

拓展

计算任意平面的多边形

本代码计算结果为多边形所在平面平行于xoy平面时的,如需要其他平面的,可以通过变换矩阵,将原平面变换为xoy平面,再进行计算。

关于曲线

如果想要计算带曲线的多边形,可以通过离散化的方式,把曲线转化为多个顶点,然后进行计算,只要离散的精度比较高,几乎不存在误差。
曲线转化为多个顶点,然后进行计算,只要离散的精度比较高,几乎不存在误差。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值