计算机毕业设计Python+Hadoop+Spark知网文献推荐系统 知网可视化 大数据毕业设计(源码+论文+讲解视频+PPT)

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!

信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!

感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人

介绍资料

《Python+Hadoop+Spark知网文献推荐系统》任务书

一、项目背景与目标
  1. 背景
    随着学术文献数据爆炸式增长(如知网文献总量超3亿篇),传统检索系统依赖关键词匹配,存在信息过载、长尾文献发现困难等问题。本项目旨在构建基于大数据技术的智能文献推荐系统,提升科研人员文献获取效率,促进跨学科知识融合。

  2. 目标

    • 短期目标:完成系统架构设计与核心算法开发,实现基于用户行为和文献内容的混合推荐。
    • 长期目标:在知网等平台部署,使文献推荐准确率提升40%以上,用户满意度达90%。
二、研究内容与任务分解

1. 数据采集与预处理

  • 任务
    • 爬取知网文献元数据(标题、摘要、关键词、引用关系等)。
    • 收集用户行为日志(检索记录、下载记录、引用行为)。
    • 清洗与标准化数据,构建学术异构网络(用户-文献-作者-期刊)。
  • 技术:Python爬虫(Scrapy)、Hadoop HDFS存储、Spark ETL处理。

2. 特征工程与模型构建

  • 任务
    • 提取文献特征(BERT语义向量、引用网络结构特征)。
    • 构建用户画像(领域偏好、活跃度、学术影响力)。
    • 设计混合推荐模型:
      • 知识图谱嵌入(KGE):捕捉文献间隐含关联。
      • 深度神经网络(DNN):学习用户-文献交互模式。
  • 技术:Spark MLlib、TensorFlow、GraphSAGE图神经网络。

3. 系统架构与开发

  • 任务
    • 搭建分布式计算平台(Hadoop+Spark集群)。
    • 开发推荐引擎模块(离线计算+实时推荐)。
    • 构建前端界面(文献展示、推荐结果可视化)。
  • 技术:Flask/Django后端、Vue.js前端、Kafka消息队列。

4. 性能优化与测试

  • 任务
    • 优化模型训练效率(分布式计算、特征剪枝)。
    • 设计对比实验(与知网现有系统、HINRec模型对比)。
    • 测试系统稳定性(万级并发请求压力测试)。
  • 技术:Spark SQL性能调优、JMeter压力测试。
三、技术路线
 

mermaid

graph TD
A[数据采集] --> B{数据预处理}
B --> C[文献特征提取]
B --> D[用户画像构建]
C --> E[知识图谱嵌入]
D --> F[深度神经网络]
E --> G[混合模型训练]
F --> G
G --> H[推荐引擎]
H --> I[前端展示]
H --> J[实时反馈]
J --> B
四、进度安排

阶段时间任务内容交付成果
需求分析202X.01-02调研知网用户需求,设计系统架构《需求规格说明书》
数据准备202X.03-04采集与清洗数据,构建学术异构网络清洗后的数据集
模型开发202X.05-07特征工程、模型训练与调优推荐算法库(Python)
系统开发202X.08-10开发推荐引擎与前端界面可运行系统原型
测试部署202X.11-12A/B测试、性能优化、部署上线《测试报告》《部署文档》
五、预期成果
  1. 学术成果
    • 发表中文核心论文1-2篇,申请软件著作权1项。
  2. 技术成果
    • 开发“知网智能推荐系统”原型,支持百万级用户实时推荐。
  3. 应用成果
    • 在知网等平台试点应用,推荐准确率提升40%,用户满意度≥90%。
六、风险与应对措施

风险类型风险描述应对措施
数据质量爬取数据存在噪声与缺失值引入数据清洗规则,使用GAN补全
模型过拟合特征维度过高导致模型泛化能力差采用正则化、Dropout技术
系统延迟实时推荐响应时间过长优化Spark计算任务分配策略
七、经费预算

项目预算金额(万元)说明
硬件资源10服务器租赁、存储设备
开发工具5开发框架授权、云服务费用
测试与部署8压力测试、第三方接口费用
总计23
八、团队分工

成员职责技能要求
项目经理统筹进度、协调资源PMP认证、项目管理经验
数据工程师数据采集、清洗与存储Python、Hadoop、SQL
算法工程师特征工程、模型训练与优化TensorFlow、Spark MLlib
前端工程师界面开发与用户体验设计Vue.js、CSS3、交互设计
测试工程师系统测试与性能调优JMeter、Python自动化测试
九、参考文献
  1. 《基于知识图谱的学术推荐系统研究》[J]. 计算机学报, 2024.
  2. Spark GraphX编程指南[Z]. Apache Software Foundation, 2023.
  3. Hive LLAP查询加速方案[Z]. Hortonworks, 2024.
  4. "Heterogeneous Graph Neural Networks for Academic Recommendation"[J]. KDD, 2022.

任务书编制单位:XXX大学计算机科学与技术学院
编制日期:202X年XX月XX日


备注:可根据实际需求调整技术选型、进度安排及经费预算。

运行截图

推荐项目

上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)

项目案例

优势

1-项目均为博主学习开发自研,适合新手入门和学习使用

2-所有源码均一手开发,不是模版!不容易跟班里人重复!

🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌

源码获取方式

🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅

点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

B站计算机毕业设计大学

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值