温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
温馨提示:文末有 CSDN 平台官方提供的学长联系方式的名片!
信息安全/网络安全 大模型、大数据、深度学习领域中科院硕士在读,所有源码均一手开发!
感兴趣的可以先收藏起来,还有大家在毕设选题,项目以及论文编写等相关问题都可以给我留言咨询,希望帮助更多的人
介绍资料
开题报告:《Python+DeepSeek-R1大模型古诗词情感分析》
一、研究背景与意义
研究背景
古诗词作为中华文化的瑰宝,蕴含丰富的情感表达(如思乡、怀古、忧国、爱情等)。然而,传统古诗词情感分析存在以下挑战:
- 语义复杂性:古诗词语言凝练、意象深远,常依赖典故、隐喻等修辞手法,传统方法难以准确解析深层情感;
- 标注数据稀缺:高质量的古诗词情感标注数据集较少,限制了监督学习模型的应用;
- 多模态特征缺失:现有研究多聚焦文本本身,未充分利用诗词的韵律、意象等辅助特征。
近年来,深度学习与大模型技术(如BERT、GPT)在自然语言处理领域取得突破,DeepSeek-R1大模型通过强化学习与大规模预训练,展现出强大的语义理解与推理能力。结合Python的灵活性与丰富的开源库(如TensorFlow、PyTorch),可为古诗词情感分析提供新方案。
研究意义
- 文化价值:推动中华优秀传统文化的数字化传承,为诗词研究提供量化分析工具;
- 教育价值:辅助诗词教学与鉴赏,帮助学习者理解诗词情感内涵;
- 技术价值:探索大模型在低资源语言(如古汉语)情感分析中的应用模式,为相关领域提供参考。
二、国内外研究现状
国外研究现状
国外在情感分析领域起步较早,主要成果包括:
- 多语言支持:开发跨语言情感分析模型(如XLM-R),支持英语、法语等多语言;
- 多模态融合:结合文本、语音、图像等模态提升分析精度;
- 低资源优化:通过迁移学习与半监督学习缓解标注数据不足问题。
国内研究现状
国内研究主要集中于以下方向:
- 现代汉语情感分析:利用深度学习模型(如BiLSTM、TextCNN)分析社交媒体、新闻评论等文本;
- 古诗词情感分析:部分研究尝试基于规则或传统机器学习(如SVM)进行情感分类,但准确率较低(约60%-70%);
- 大模型应用空白:国内尚无将DeepSeek-R1大模型应用于古诗词情感分析的公开案例。
三、研究内容与技术路线
研究内容
本研究旨在构建基于Python+DeepSeek-R1大模型的古诗词情感分析系统,重点解决以下问题:
- 低资源数据利用:通过迁移学习与自监督学习,缓解古诗词标注数据稀缺问题;
- 深层语义解析:结合DeepSeek-R1大模型的推理能力,解析诗词中的隐喻、典故等复杂情感表达;
- 多模态特征融合:引入诗词的韵律(如平仄、押韵)、意象(如“明月”“孤雁”)等辅助特征,提升分析精度。
技术路线
系统采用分层架构设计,包含以下模块:
- 数据采集与预处理层:
- 数据采集:通过Python爬虫技术从《全唐诗》《全宋词》等典籍及诗词网站(如古诗文网)获取古诗词文本;
- 数据清洗:去除重复诗词、纠正错别字、标准化文本格式(如繁体转简体);
- 情感标注:结合专家标注与半自动标注方法,构建包含“喜”“怒”“哀”“乐”“思”等情感标签的数据集。
- 特征工程层:
- 文本特征:通过Word2Vec、BERT等模型生成诗词的词向量与句向量;
- 韵律特征:提取诗词的平仄模式、押韵规律;
- 意象特征:构建古诗词意象词典(如“柳”象征离别,“雁”象征思乡),统计诗词中意象的出现频率。
- 情感分析模型层:
- 预训练模型微调:基于DeepSeek-R1大模型,在古诗词数据集上进行微调,学习古汉语的语义特征;
- 多模态融合:将文本特征、韵律特征、意象特征输入到全连接网络或注意力机制中,生成最终情感分类结果;
- 模型优化:采用交叉验证与HyperOpt进行超参数调优,通过混淆矩阵与F1值评估模型性能。
- 可视化与接口层:
- 动态可视化:基于Matplotlib与Seaborn实现诗词情感分布热力图、意象情感关联图;
- API接口:开发RESTful API,支持诗词教学平台、文化研究机构调用情感分析结果。
四、实验设计与评估体系
数据集构建
- 自建数据集:整合《全唐诗》《全宋词》及古诗文网数据,构建包含10万首诗词、5类情感标签(喜、怒、哀、乐、思)的数据集;
- 公开数据集:采用“中华古诗词情感分析数据集”(含2万首诗词)作为补充。
评估指标
- 分类准确率:在测试集上,目标准确率≥85%;
- 多标签分类能力:支持单首诗词包含多种情感(如“思乡+哀愁”)的识别;
- 可解释性:通过SHAP值或LIME解释模型预测结果,提升可信度。
五、实施计划与风险管控
实施计划
- 第一阶段(第1-2个月):查阅文献,确定研究方案与技术路线,完成开题报告;
- 第二阶段(第3-4个月):采集和预处理古诗词数据,构建特征工程模块;
- 第三阶段(第5-6个月):基于Python+DeepSeek-R1实现情感分析模型与可视化模块,并进行实验验证和优化;
- 第四阶段(第7-8个月):开发古诗词情感分析系统,进行系统测试和调试;
- 第五阶段(第9-10个月):撰写论文,总结研究成果,准备答辩。
风险管控
- 数据质量风险:通过专家审核与人工抽检结合,确保标注数据准确率≥95%;
- 模型偏差风险:采用A/B测试与用户反馈,降低情感分类偏差;
- 文化适配风险:结合诗词学专家意见,优化意象词典与韵律特征提取规则。
六、预期成果与创新点
预期成果
- 系统原型:支持单首诗词情感分析,准确率≥85%,多标签识别准确率≥75%;
- 数据集:开源“ChinesePoemEmotion”古诗词情感分析数据集,含10万首诗词、5类情感标签;
- 学术论文:发表1篇核心期刊论文,申请1项软件著作权。
创新点
- 技术融合创新:首次将Python+DeepSeek-R1大模型结合应用于古诗词情感分析,实现低资源语言的高效处理;
- 多模态特征融合:构建涵盖文本、韵律、意象的15维特征体系,分析准确率较传统方法提升30%;
- 文化适配优化:结合诗词学理论,设计意象词典与韵律特征提取规则,提升模型文化适配性。
七、可行性分析
技术可行性
- 开源工具支持:Python提供丰富的NLP库(如jieba、NLTK)与深度学习框架(如TensorFlow、PyTorch);
- 硬件资源:实验室服务器(16核CPU、64GB内存)满足模型训练需求。
数据可行性
- 数据采集:通过诗词典籍与公开网站获取多源数据;
- 数据标注:联合诗词学专家与少量人工标注,构建高质量数据集。
八、参考文献
- 教育部. 中华优秀传统文化数字化发展报告[R]. 2020-2025.
- 李某某. 基于深度学习的现代汉语情感分析研究[D]. 北京大学, 2024.
- 张某某. 古诗词意象与情感关联性研究[J]. 文学遗产, 2025.
- Python官方文档[EB/OL]. https://www.python.org, 2025.
- DeepSeek-R1技术白皮书[EB/OL]. https://deepseek.ai, 2025.
- CSDN博客. Python+DeepSeek-R1古诗词情感分析系统[EB/OL]. https://blog.csdn.net, 2025.
指导教师意见:
本课题选题紧扣文化传承与技术创新的结合点,技术路线清晰,创新点突出,具备较高的学术价值与应用前景。建议进一步细化实验设计,增加跨朝代诗词的情感差异分析,并注重模型的可解释性与文化适配性优化。
指导教师签名:
日期:2025年6月3日
运行截图
推荐项目
上万套Java、Python、大数据、机器学习、深度学习等高级选题(源码+lw+部署文档+讲解等)
项目案例
优势
1-项目均为博主学习开发自研,适合新手入门和学习使用
2-所有源码均一手开发,不是模版!不容易跟班里人重复!
🍅✌感兴趣的可以先收藏起来,点赞关注不迷路,想学习更多项目可以查看主页,大家在毕设选题,项目代码以及论文编写等相关问题都可以给我留言咨询,希望可以帮助同学们顺利毕业!🍅✌
源码获取方式
🍅由于篇幅限制,获取完整文章或源码、代做项目的,拉到文章底部即可看到个人联系方式。🍅
点赞、收藏、关注,不迷路,下方查看👇🏻获取联系方式👇🏻