#1079 : 离散化+线段树

时间限制: 10000ms
单点时限: 1000ms
内存限制: 256MB
描述

小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~

这天小Hi和小Ho所在的学校举办社团文化节,各大社团都在宣传栏上贴起了海报,但是贴来贴去,有些海报就会被其他社团的海报所遮挡住。看到这个场景,小Hi便产生了这样的一个疑问——最后到底能有几张海报还能被看见呢?

于是小Ho肩负起了解决这个问题的责任:因为宣传栏和海报的高度都是一样的,所以宣传栏可以被视作长度为L的一段区间,且有N张海报按照顺序依次贴在了宣传栏上,其中第i张海报贴住的范围可以用一段区间[a_i, b_i]表示,其中a_i, b_i均为属于[0, L]的整数,而一张海报能被看到当且仅当存在长度大于0的一部分没有被后来贴的海报所遮挡住。那么问题就来了:究竟有几张海报能被看到呢?

提示一:正确的认识信息量

提示二:小Hi大讲堂之线段树的节点意义

输入

每个测试点(输入文件)有且仅有一组测试数据。

每组测试数据的第1行为两个整数N和L,分别表示总共贴上的海报数量和宣传栏的宽度。

每组测试数据的第2-N+1行,按照贴上去的先后顺序,每行描述一张海报,其中第i+1行为两个整数a_i, b_i,表示第i张海报所贴的区间为[a_i, b_i]。

对于100%的数据,满足N<=10^5,L<=10^9,0<=a_i<b_i<=L。

输出

对于每组测试数据,输出一个整数Ans,表示总共有多少张海报能被看到。

样例输入
5 10
4 10
0 2
1 6
5 9
3 4
样例输出
5

离散化+线段树。线段树的经典应用题(染色)。离散化的处理也是关键。

重点是建树是要注意叶子节点是(l,l+1)而不是(l,l)

模板是用的是上篇

#include <iostream>
#include <string.h>
#include <cstdio>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
#include <math.h>
using namespace std;
#define pow2(x) (1<<x)
#define lg2(x) (log(x*1.0)/log(2.0))

const int maxnode = 4*100005;  
int num,col;
int a[100010],b[1000010],c[200020];
map<int,int>mp;
int vis[800080];
int ans;
int _sum, _min, _max, op, qL, qR, v;  

struct IntervalTree {  
	int sumv[maxnode], minv[maxnode], maxv[maxnode], setv[maxnode];  

	// 维护信息  
	void maintain(int o, int L, int R) {  
		int lc = o*2, rc = o*2+1;  
		if(R > L) {  
			sumv[o] = sumv[lc] + sumv[rc];  
			minv[o] = min(minv[lc], minv[rc]);  
			maxv[o] = max(maxv[lc], maxv[rc]);  
		}  
		if(setv[o] >= 0) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (R-L+1); }  
	}  

	// 标记传递  
	void pushdown(int o) {  
		int lc = o*2, rc = o*2+1;  
		if(setv[o] >= 0) { //本结点有标记才传递。注意本题中set值非负,所以-1代表没有标记  
			setv[lc] = setv[rc] = setv[o];  
			setv[o] = -1; // 清除本结点标记  
		}  
	}  

	void update(int o, int L, int R) {  
		int lc = o*2, rc = o*2+1;  
		if(qL <= L && qR >= R) { // 标记修改  
			setv[o] = v;    
			//maintain(o, L, R);  
			return;
		}
		if(L+1==R) 
		{
			//maintain(o, L, R);  
			return;
		}
		pushdown(o);  
		int M = L + (R-L)/2;  
		if(qL <= M) update(lc, L, M); else maintain(lc, L, M);  
		if(qR >=M) update(rc, M, R); else maintain(rc, M, R);  
		//maintain(o, L, R);  
	}  

  void query(int o, int L, int R) {  
		if(setv[o] >= 0&&!vis[setv[o]]) {  
			vis[setv[o]]=1;
			ans++;
			return;
		}
		if(L+1==R)
		{
			return;
		}
		pushdown(o);
		int M = L + (R-L)/2;  
		query(o*2, L, M);  
		query(o*2+1, M, R);    
	}  
};  

const int INF = 1000000000;  

IntervalTree tree;  

int main() {  
	int n, m;  
	while(scanf("%d%d", &n,&m) == 2) {  
		ans=0;
		memset(&tree, 0, sizeof(tree));  
		memset(tree.setv, -1, sizeof(tree.setv));  
		memset(vis,0,sizeof(vis));
		//tree.setv[1] = 0;  
		num=1;
		col=0;
		for(int i=0;i<n;i++)
		{
			scanf("%d%d",&a[i],&b[i]);
			c[i<<1]=a[i];
			c[i<<1|1]=b[i];
		}
		sort(c,c+2*n);
		for(int i=0;i<2*n;i++)//去重离散化
		{
			if(!mp[c[i]])
			{
				mp[c[i]]=num;
				num++;
			}
		}
		for(int i=0;i<n;i++)
		{
			qL=mp[a[i]];
			qR=mp[b[i]];
			v=col++;
			tree.update(1,1,num-1);
		}
		tree.query(1,1,num-1);
		cout<<ans<<endl;
	}  
	return 0;  
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值