时间限制:
10000ms
单点时限:
1000ms
内存限制:
256MB
描述
小Hi和小Ho在回国之后,重新过起了朝7晚5的学生生活,当然了,他们还是在一直学习着各种算法~
这天小Hi和小Ho所在的学校举办社团文化节,各大社团都在宣传栏上贴起了海报,但是贴来贴去,有些海报就会被其他社团的海报所遮挡住。看到这个场景,小Hi便产生了这样的一个疑问——最后到底能有几张海报还能被看见呢?
于是小Ho肩负起了解决这个问题的责任:因为宣传栏和海报的高度都是一样的,所以宣传栏可以被视作长度为L的一段区间,且有N张海报按照顺序依次贴在了宣传栏上,其中第i张海报贴住的范围可以用一段区间[a_i, b_i]表示,其中a_i, b_i均为属于[0, L]的整数,而一张海报能被看到当且仅当存在长度大于0的一部分没有被后来贴的海报所遮挡住。那么问题就来了:究竟有几张海报能被看到呢?
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第1行为两个整数N和L,分别表示总共贴上的海报数量和宣传栏的宽度。
每组测试数据的第2-N+1行,按照贴上去的先后顺序,每行描述一张海报,其中第i+1行为两个整数a_i, b_i,表示第i张海报所贴的区间为[a_i, b_i]。
对于100%的数据,满足N<=10^5,L<=10^9,0<=a_i<b_i<=L。
输出
对于每组测试数据,输出一个整数Ans,表示总共有多少张海报能被看到。
5 10 4 10 0 2 1 6 5 9 3 4样例输出
5
离散化+线段树。线段树的经典应用题(染色)。离散化的处理也是关键。
重点是建树是要注意叶子节点是(l,l+1)而不是(l,l)
模板是用的是上篇
#include <iostream>
#include <string.h>
#include <cstdio>
#include <string>
#include <map>
#include <vector>
#include <queue>
#include <algorithm>
#include <set>
#include <math.h>
using namespace std;
#define pow2(x) (1<<x)
#define lg2(x) (log(x*1.0)/log(2.0))
const int maxnode = 4*100005;
int num,col;
int a[100010],b[1000010],c[200020];
map<int,int>mp;
int vis[800080];
int ans;
int _sum, _min, _max, op, qL, qR, v;
struct IntervalTree {
int sumv[maxnode], minv[maxnode], maxv[maxnode], setv[maxnode];
// 维护信息
void maintain(int o, int L, int R) {
int lc = o*2, rc = o*2+1;
if(R > L) {
sumv[o] = sumv[lc] + sumv[rc];
minv[o] = min(minv[lc], minv[rc]);
maxv[o] = max(maxv[lc], maxv[rc]);
}
if(setv[o] >= 0) { minv[o] = maxv[o] = setv[o]; sumv[o] = setv[o] * (R-L+1); }
}
// 标记传递
void pushdown(int o) {
int lc = o*2, rc = o*2+1;
if(setv[o] >= 0) { //本结点有标记才传递。注意本题中set值非负,所以-1代表没有标记
setv[lc] = setv[rc] = setv[o];
setv[o] = -1; // 清除本结点标记
}
}
void update(int o, int L, int R) {
int lc = o*2, rc = o*2+1;
if(qL <= L && qR >= R) { // 标记修改
setv[o] = v;
//maintain(o, L, R);
return;
}
if(L+1==R)
{
//maintain(o, L, R);
return;
}
pushdown(o);
int M = L + (R-L)/2;
if(qL <= M) update(lc, L, M); else maintain(lc, L, M);
if(qR >=M) update(rc, M, R); else maintain(rc, M, R);
//maintain(o, L, R);
}
void query(int o, int L, int R) {
if(setv[o] >= 0&&!vis[setv[o]]) {
vis[setv[o]]=1;
ans++;
return;
}
if(L+1==R)
{
return;
}
pushdown(o);
int M = L + (R-L)/2;
query(o*2, L, M);
query(o*2+1, M, R);
}
};
const int INF = 1000000000;
IntervalTree tree;
int main() {
int n, m;
while(scanf("%d%d", &n,&m) == 2) {
ans=0;
memset(&tree, 0, sizeof(tree));
memset(tree.setv, -1, sizeof(tree.setv));
memset(vis,0,sizeof(vis));
//tree.setv[1] = 0;
num=1;
col=0;
for(int i=0;i<n;i++)
{
scanf("%d%d",&a[i],&b[i]);
c[i<<1]=a[i];
c[i<<1|1]=b[i];
}
sort(c,c+2*n);
for(int i=0;i<2*n;i++)//去重离散化
{
if(!mp[c[i]])
{
mp[c[i]]=num;
num++;
}
}
for(int i=0;i<n;i++)
{
qL=mp[a[i]];
qR=mp[b[i]];
v=col++;
tree.update(1,1,num-1);
}
tree.query(1,1,num-1);
cout<<ans<<endl;
}
return 0;
}