
Flink反欺诈
文章平均质量分 83
*星星之火*
从菜鸟到专家,陪同大家一起成长
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【Flink银行反欺诈系统设计方案】7.反欺诈离线分析场景及代码实现
离线分析在反欺诈中用于对历史数据进行深度挖掘,识别复杂模式和长期行为异常。以下是5个典型场景及实现示例(基于 **Spark** 和 **Python**- **离线分析场景**:团伙检测、时间分布、网络图谱、统计聚合、机器学习。- **实现工具**:Spark SQL、GraphFrames、MLlib。- **核心逻辑**:通过批处理挖掘历史数据中的复杂模式,结合统计方法和算法增强欺诈检测能力。原创 2025-03-07 14:35:16 · 558 阅读 · 0 评论 -
【Flink银行反欺诈系统设计方案】6.用户画像数据与反欺诈系统的关联思路
作为软件架构师,设计银行反欺诈系统与用户画像数据的关联方案时,需要结合用户画像的静态和动态特征,通过实时或离线分析增强欺诈检测的精准性和覆盖场景。以下是设计思路、案例说明及代码示例。原创 2025-03-07 12:59:12 · 1306 阅读 · 0 评论 -
【Flink银行反欺诈系统设计方案】4.Flink CEP 规则表刷新方式
在Flink CEP中,规则的动态更新是一个关键需求,尤其是在风控系统中,规则可能会频繁调整。为了实现规则的动态更新,我们可以利用Flink的**Broadcast State**机制。以下是详细的实现方案和代码示例,展示如何在规则表(`risk_rules`)发生变化时,动态更新Flink CEP的规则。原创 2025-03-05 13:59:11 · 683 阅读 · 0 评论 -
【Flink银行反欺诈系统设计方案】3.欺诈的7种场景和架构方案、核心表设计
作为软件架构师,设计一个银行反欺诈风控系统需要综合考虑多种欺诈场景,并针对每个场景设计相应的检测规则和实现方案。以下是详细的设计思路、欺诈场景分类、软件架构设计方案以及表设计。通过以上设计,可以实现一个高效、灵活且可扩展的银行反欺诈风控系统。原创 2025-03-05 13:38:47 · 1266 阅读 · 0 评论 -
【Flink银行反欺诈系统设计方案】5.反欺诈系统全生命周期设计
设计银行反欺诈系统需要构建一个覆盖事前、事中、事后的全生命周期闭环体系,结合实时检测、离线分析、动态策略调整与持续优化。通过以上设计,系统可实现从风险预防、实时阻断到持续优化的完整闭环,同时兼顾性能、安全与可维护性。:构建数据基础、特征工程、模型训练与策略预配置。:实时风险决策、拦截高风险操作、触发告警。:回溯事件根因、优化模型与策略。原创 2025-03-05 08:18:18 · 881 阅读 · 0 评论 -
【Flink银行反欺诈系统设计方案】1.短时间内多次大额交易场景的flink与cep的实现
# 1. 经典案例:短时间内多次大额交易## 1.1 场景描述规则1:单笔交易金额超过10,000元。规则2:同一用户在10分钟内进行了3次或更多次交易。风险行为:同时满足规则1和规则2的交易行为。## 1.2 风险判定逻辑原创 2025-03-04 13:44:57 · 771 阅读 · 0 评论 -
【Flink银行反欺诈系统设计方案】2.风控规则表设计与Flink CEP结合
java复制// 交易数据POJO// 风控规则POJO// 规则条件(如:amount > 10000)// 规则动作(如:告警、拦截)// 规则优先级// 是否启用// 风控结果POJO## 3.2 规则加载与动态模式构建java```c// 交易数据流// 规则数据流(从JDBC加载)// 广播规则流// 连接交易数据流和规则广播流// 输出结果动态规则加载:通过JDBC Source从risk_rules表加载规则。原创 2025-03-04 14:29:27 · 446 阅读 · 0 评论