大数据查询
sparkexpert
大数据挖掘技术(人工智能)的爱好者
展开
-
facebook faiss的安装测试
Faiss 是由 Facebook AI Research(FAIR)开发的一个用于有效的相似性搜索(similarity search)和稠密矢量聚类(clustering of dense vectors)的库。它包含了在任何大小的向量集合里进行搜索的算法,向量集合的大小甚至可以达到装不进 RAM。它还包含了用于评估和参数调优的支持代码。Faiss 是用 C ++编写的,带有 Python原创 2017-03-31 10:21:10 · 8737 阅读 · 4 评论 -
facebook Faiss的基本使用示例(逐步深入)
针对上一篇文章,安装完毕之后,可以对faiss进行基本的案例学习,具体步骤如下: step1:构造实验数据 step2:为向量集构建IndexFlatL2索引,它是最简单的索引类型,只执行强力L2距离搜索 step3:进行简单的k-近邻搜索 结果如下: NOTE: 1.程序输出为查询向量的最近邻的4个向量的索引原创 2017-03-31 10:34:19 · 26623 阅读 · 4 评论