最长公共子串

本文地址:http://blog.csdn.net/spch2008/article/details/38942175


描述

之前写过一篇最长公共子序列, 今天来补上最长公共子串. 子序列:  不要求字符串联系,只要顺序一致即可. 子串: 要求字符串必须连续.

A:acaccbabb

B:acbac

最长子序列: acac (要求顺序不变即可)

最长子串:cba (要求必须连续)


其实,最长子串问题完全可以由最长子序列问题演变而来。下面分析一下最长公共子序列的递推公式:

当xi 与 yj 不相等的时候,我们要继承前一个最长公共子序列的长度。而对于子串来说,不相等,意味着这次比较结束,

直接赋0即可c[i][j] = 0。

int LCS_IMP(char *X, char *Y, int lenX, int lenY, int **c)  
{  
    //初始化  
    for(int i = 0; i < lenX + 1; i++)  
    {  
        c[i][0] = 0;  
    }  
    for(int j = 0; j < lenY + 1; j++)  
    {  
        c[0][j] = 0;   
    }  
  
    int maxlen = 0;
    for(int i = 1; i < lenX + 1; i++)  
    {  
        for(int j = 1; j < lenY + 1; j++)  
        {  
            if(X[i-1] == Y[j-1])  
            {  
                c[i][j] = c[i-1][j-1] + 1;  
            }  
            else  
            {  
                c[i][j] = 0;
				if ( c[i-1][j-1] > maxlen)
					maxlen = c[i-1][j-1];
            }  
        }  
    }
	return maxlen;
}  
  
  
int LCS(char *X, char *Y, int lenX, int lenY)  
{  
    //开辟数组空间  
    int **c = new int*[lenX + 1];  
    for(int i = 0; i < lenX + 1; i++)  
        c[i] = new int[lenY + 1];  
      
  
    int max_len = LCS_IMP(X, Y, lenX, lenY, c);  
    
  
    //释放数组空间  
    for(int i = 0; i < lenX + 1; i++)  
    {  
        delete [] c[i];   
    }  
    delete [] c;  
  
    return max_len;  
}

优化

注意到最长子串与子序列的不同,即子串不需要记录c[i][j-1], c[i-1][j]的值,这就有了优化的空间。在最长子串中,

唯一的推导公式为 c[i][j] = c[i-1][j-1] + 1, 也就是说,下一行,仅仅依赖上一行的记录值。


c[i][j] = c[i-1][j-1] + 1;   如下图所示。当第二行值计算出来后,第一行值不再需要,可以丢弃。

此时,将第一行,即i-1当做第j+1 行使用,依赖第i行获取依赖值。c[i+1][j+1] = c[i][j] + 1;

问题:

1. 按照这个推导规则,仅仅使用两行即可,不停的在这两行间做变换,来模拟第i行,第i+1行等。

2. 下一行的第一个元素无法通过推导的出来。即下图中 ? 处, 这个需要单独处理。


int LCS(char *X, char *Y, int lenX, int lenY)  
{ 
    //开辟数组空间  
    int **c = new int*[2];  
    for(int i = 0; i < 2; i++)  
        c[i] = new int[lenY];  

    //初始化  
    for(int i = 0; i < 2; i++)  
	for (int j = 0; j < lenY; j++)
  		c[i][j] = 0;

  
    int maxlen = 0;
    int begin  = -1;
    for(int i = 0; i < lenX; i++)  
    {  
        // 上下两行进行切换, 解决问题1
        int curr = ((i & 1) == 0);
        int prev = ((i & 1) == 1);

        // 首位赋值, 解决问题2
        if(X[i] == Y[0])
            c[curr][0] = 1;
        else
            c[curr][0] = 0;

        for(int j = 0; j < lenY; j++)  
        {
            if(X[i] == Y[j])  
            {   
                c[curr][j] = c[prev][j-1] + 1;
            }  
            else  
            {  
                c[curr][j] = 0;
                if (c[prev][j-1] > maxlen)
                {
                    maxlen = c[prev][j-1];
                    begin  = j - maxlen;
                }
            }  
        }  
    }

    //释放数组空间  
    for(int i = 0; i < 2; i++)  
    {  
        delete [] c[i];   
    }  
    delete [] c;  

	//打印子串
	if (begin != -1)
	{
		for (int j = begin; j <= maxlen; j++)
			cout << Y[j];
		cout << endl;
	}

	return maxlen;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值