递归 求幂

本文探讨了两种求幂的方法:迭代和递归。递归算法在空间复杂度上为O(logN),时间复杂度也为O(logN),如计算X^10只需4次乘法,而迭代算法则需要N次乘法。虽然递归在小规模时更快,但当N很大时可能导致空间问题。通过二进制表示和优化,可以将递归转换为迭代,进一步降低空间需求,保持O(logN)的时间复杂度。
摘要由CSDN通过智能技术生成

1. 迭代算法

long int pow(long int X, unsigned int N)
{
	long int val = 1;
	for(int i = 0; i < N; i++)
		val *= X;
	return val;
}

2. 递归算法  

long int pow(long int X, unsigned int N)  
{  
    if(N == 0)  
        return 1;  
    if(N == 1)  
        return X;  
    if( N % 2 == 0)  
        return pow( X * X, N / 2);  
    else  
        return pow( X * X, N / 2) * X;  
} 


      递归算法原理:

               N为偶数: X^N = X^(N/2) *  X^(N/2)

               N为奇数: X^N = X^(N/2) * X^(N/2) * X

               比如 X^10 = X^5 * X^5, X^5 = X^2 * X^2 * X, X^2 = X^1 * X^1。

3. 二者比较

    (1)迭代算法需要O(1)空间复杂度,需要O(N)时间复杂度。

              需要进行N此乘法运算,而乘法又比较耗费时间。

     (2)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值