剑指offer. 43 数字1的个数

剑指offer. 43 数字1的个数

题目描述:

给定一个整数 n,计算所有小于等于 n 的非负整数中数字 1 出现的个数。

示例:

输入: 13
输出: 6 
解释: 数字 1 出现在以下数字中: 1, 10, 11, 12, 13 。

解题思路:

解法1: 挨个算1的次数     O(NlogN) (log以10为底)

解法2:递归算 左神p495   O(logn)

神仙代码: 计算每一位有几个1   O(logn) 

分析:https://leetcode.com/problems/number-of-digit-one/discuss/64390/AC-short-Java-solution

常规代码:

class Solution {
public:
    int NumberOf1Between1AndN_Solution(int n)
    {
        int count=0;
        if(n<1) return 0;
        for(int i=1;i<=n;++i)
        {
            int temp=i;
            while(temp){
               if(temp%10==1)
                  ++count;
               temp/=10;
            }
        }
        return count;
    }
};

套路代码:

class Solution {
public:
    int NumberOf1Between1AndN_Solution(int n)
    {
		//以下都是n=123
		if(n<1)
			return 0;
		if(n<10)
			return 1;
		int len = getlen(n); // 计算n有几位 len=3
		int temp = pow(10,len-1); // temp = 100;
		int first = n/temp;  // 计算最高位值 first=1
		
		//计算最高位 有多少个1,分情况讨论假如最高位是1,则有123-100+1 个1,假如大于1 则有100个1,即temp个
		int firstnum = (first == 1?(n%temp+1):temp);
		
//计算24-123 中除了最高位,十位 个位有多少个1
//为啥是24-123呢 因为刚好有 最高位的数字*10^(len-1)个数,也就可以可以平移到1~最高位*10的(len-1)
//公式等于最高位的数字*除去最高位后剩下的位数*某一位固定是1,其他位都可以从0到9自由变化
		int othernum = first*(len-1)*(temp/10);
		
		//按照这样的方法递归计算 1-23;
		return firstnum+othernum+NumberOf1Between1AndN_Solution(n% temp);
		
    }
	int getlen(int n){
		int res=0;
		while(n){
			++res;
			n /= 10;
		}
		return res;
	}
};

神仙代码:

class Solution {
public:
    int countDigitOne(int n) {
        int count=0;
        // 计算每一位上1的个数
        for(long k=1;k<=n;k *= 10){
            int r=n/k, m= n%k;   // m表示第k位是几
            count +=(r+8) / 10 *k + (r % 10 == 1? m+1:0);
        }
        
        return count;
    }
};

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值