OpenAI的ChatGPT推出后,生成式AI技术开始在各行业快速发展。生成式人工智能工具通过使用深度学习技术来创建与输入数据类似的新数据实例,从而为人工智能赋予人类创造力。该技术为各个行业和领域的多样化应用铺平了道路(图1)。例如:
- 文本生成
- 形象创作
- 音乐制作
为了成功利用这项技术,企业通常会寻求人工智能数据收集服务或硬件供应商等专用服务的支持。在这里,我们探讨了 7 种类型的生成式人工智能服务,这些服务有助于增强企业对生成式人工智能技术的使用,从而获得竞争优势。
图 1. 2022 年美国各行业采用 Gen AI 的情况
资料来源:Statista
表 1. 所有服务类别和服务提供商的摘要:
服务列表
服务提供商示例
1
生成式人工智能策略和用例识别服务
麦肯锡
贝恩公司
埃森哲
波士顿
2
生成式人工智能训练数据收集服务
Clickworker
3
生成式AI硬件解决方案提供商
NVIDIA
谷歌的张量处理单元 (TPU)
4
生成式人工智能基础模型提供商
OpenAI
谷歌
5
生成式人工智能培训和开发服务
H2O.ai
DataRobot
Microsoft Azure
AWS SageMaker
6
生成式人工智能应用
https://aimultiple.com/hub/generative-ai
7
人类反馈强化学习 (RLHF)
Clickworker
多产
1. 生成式人工智能策略和用例识别服务
对于任何将生成式人工智能集成到其业务流程中的业务规划来说,健全的策略都是至关重要的。这可能具有挑战性,因为它需要深入了解人工智能技术和特定的业务环境,包括:
- 运营需求
- 人力技术
- 道德考虑
- 人工智能部署的潜在影响和风险
优秀的案例有:
麦肯锡
麦肯锡通过设计定制算法来创建创新解决方案,例如独特的内容生成、自动化设计和产品开发,帮助企业利用生成式人工智能的潜力。它还为这些人工智能工具的实施和扩展提供战略指导,从而提高运营效率和竞争优势。
贝恩公司
贝恩公司通过制定定制策略,将人工智能驱动的创意和预测能力集成到现有工作流程中,帮助企业利用生成式人工智能。此外,他们还提供咨询服务,确保这些人工智能技术的部署符合道德、有效和可扩展,从而刺激创新和增长。
埃森哲
埃森哲的人工智能战略服务帮助企业识别和实施人工智能用例,包括生成式人工智能应用程序。
波士顿咨询集团 (BCG)
BCG 的 Gamma 团队将战略思维与强大的人工智能工具相结合,帮助企业制定制胜的生成式人工智能战略。
2. 生成式AI训练数据采集服务
生成式人工智能模型需要大量数据进行训练。软件开发人员可以使用数据收集服务来满足他们的数据需求,而无需面对收集数据的麻烦。这些服务专注于数据收集、预处理、注释以及为生成人工智能模型准备训练数据集所涉及的其他服务。Clickworker (https://www.clickworker.com)Clickworker 提供人工生成的数据集,用于通过众包平台训练生成式 AI 模型。其由超过 450 万数据收集者组成的全球团队帮助美国五分之四的科技巨头满足数据需求。他们可以提供:·用于训练 Dall E 等图像生成模型的图像数据集·用于训练自然语言处理或大型语言模型的文本或口语音频数据集·用于视频生成工具的视频数据集
3、生成式AI硬件解决方案提供商
生成式人工智能系统通常需要高性能计算能力来高效处理和学习大量数据,从而需要专门的硬件,例如 GPU 或 TPU。与第三方服务提供商合作可以帮助您实现此类计算能力。这些服务提供专门的硬件来帮助更有效地训练和运行生成式 AI 模型:
英伟达
NVIDIA 是 AI 硬件解决方案领域的领先品牌,提供强大的 GPU,由于其并行处理能力,对于训练生成型 AI 模型至关重要。
Google 的张量处理单元 (TPU)
Google 的 TPU 专为神经网络机器学习而设计,为训练和部署生成式 AI 模型提供高性能功能。
4. 生成式AI基础模型提供商
人工智能基础模型是任何生成式人工智能系统的支柱。这些是在广泛的数据集上训练的复杂模型,可以在一系列任务中生成输出,而无需特定于任务的训练数据。 该领域的两项值得注意的服务包括:
开放人工智能
OpenAI以其 GPT-3 和GPT-4大语言模型以及 Dall E 图像生成模型而闻名,在生成人工智能领域取得了前所未有的进步。GPT-n 模型能够创建类似人类的文本,使其成为为其 AI 应用程序寻求基础模型的企业的首选。
谷歌
谷歌的 BERT 模型还彻底改变了我们在人工智能中处理语言的方式,在搜索优化、句子预测和其他文本处理任务方面取得了重大进展。对于任何寻求在语言相关任务中利用生成式人工智能的公司来说,这种强大且多功能的模型是一个坚定的支持者。
5. 生成式人工智能培训和开发服务
训练生成式人工智能模型是一个具有挑战性的过程,需要专业技能,因为它涉及:·理解复杂的算法·优化神经网络架构·处理大型数据集·微调模型以生成高质量的输出,同时避免过度拟合或模式崩溃等陷阱。第三方服务提供商可以帮助简化整个开发流程。此类服务包括:
H2O.ai
H2O.ai 提供自动机器学习平台,帮助构建人工智能模型以改善业务运营,包括生成式人工智能,而无需拥有广泛的人工智能背景。
数据机器人
DataRobot 提供了一个企业人工智能平台,使用户能够准备数据、构建、训练和部署机器学习模型,包括生成模型。
微软Azure
Azure 的机器学习服务提供了一套用于构建、训练和部署机器学习模型的工具,包括对生成式 AI 的支持。
AWS SageMaker
亚马逊的 SageMaker 是一项完全托管的服务,为开发人员和数据科学家提供构建、训练和部署机器学习模型(包括生成式 AI 模型)的能力。
6. 人类反馈强化学习(RLHF)服务提供商
RLHF 是一种将传统强化学习方法与人类反馈相结合的机器学习方法。通常,拥有大型贡献者网络的公司(例如众包平台/服务提供商)提供 RLHF 服务。这些服务结合算法学习和人类反馈来训练人工智能模型,从而完善模型行为并确保与人类价值观保持一致。此类别中的一些服务提供商包括:ClickworkerClickworker 通过其众包平台提供RLHF 服务,贡献者超过 450 万。ProlificProlific 通过其贡献者网络提供 AI/ML 培训和评估服务。其服务池还包括通过其超过 12 万贡献者网络提供的 RLHF 服务。
7. 生成式人工智能应用
公司可以利用市场上现有的生成式人工智能应用程序,从而无需从头开始构建定制解决方案。这些即用型选项可以提供强大、简化的方法来利用人工智能的力量来满足业务需求。这是数据驱动的生成人工智能应用程序中心,其中包含供应商列表,可以比较您的选择并找到合适的选择。