- 博客(8)
- 收藏
- 关注
原创 【深度学习笔记】卷积神经网络的发展
补充:由于BN和Residual的提出极大缓解了卷积神经网络梯度爆炸和梯度消失的问题,让ResNet的层数大大增加,能够更好地提取特征,对于目标检测和图像分割等领域有极大的意义。补充:简单来说,就是将卷积之后得到的特征图与卷积之前的特征图相加,这要求两个特征矩阵维度一致。补充:解决梯度消失或梯度爆炸问题,对输入数据进行预处理,使特征图满足均值为0,方差为1的分布规律。补充:引入 1*1 的卷积核,使得特征矩阵的深度降低,极大的减少了参数,进而减少了计算量。3的卷积核来替代大的卷积核,以减少所需参数;
2023-09-26 15:11:26 91
原创 显著性目标检测——Stacked Cross Refinement Network for Edge-Aware Salient Object Detection(SCRN)
文章目录摘要简介显著目标检测的发展历程SCRN基本设计思路摘要显著物体检测是计算机视觉的基本任务。现有的大多数算法都集中于聚合预训练卷积神经网络的多级特征。此外,一些研究人员试图利用边缘信息进行辅助训练。但是,现有的边缘感知模型设计的单向框架仅使用边缘特征来改善分割特征。基于二进制分割和边缘图之间的逻辑相互关系,提出了一种新颖的堆叠交叉细化网络(Stacked Cross Refinement Network,SCRN) 用于显著目标检测。该框架旨在通过堆叠交叉优化单元( stacking Cross
2020-08-02 16:24:01 2400
原创 显著性目标检测——Selectivity or Invariance: Boundary-aware Salient Object Detection(BANet)
文章目录摘要简介SOD存在的关键问题SOD模型目前的困境基于图像的SOD连续扩张的边界感知网络设计基本思路主要工作总结具体方法分析共同特征提取具有三个流的边界感知SOD边界定位流内部感知流过渡补偿流集成式连续扩张模块(Integrated Successive Dilation Module,ISD)实验结果摘要通常,显著物体检测模型(SOD)在处理物体内部和边界时面临相反的要求。内部特征应不随强烈的外观变化而变化,以便从整体上弹出突出的对象,而边界的特征应对轻微的外观变化具有选择性,以区分突出的对象和
2020-08-01 22:10:39 1174
原创 显著性目标检测之Progressive Feature Polishing Network for Salient Object Detection(PFPN)
文章目录摘要摘要
2020-08-01 18:16:40 1441
原创 显著性目标检测——Detect Globally, Refine Locally: A Novel Approach to Saliency Detection
文章目录摘要简介视觉显著性的应用基于图像的显著物体检测需要解决的问题显著性检测的现状RLN设计的整体思路主要工作总结摘要上下文信息的有效集成对于显着对象检测至关重要。为了实现这一目标,大多数基于“跳过”架构的现有方法主要集中在如何集成卷积神经网络(CNN)的层次结构特征上。它们仅应用级联或按元素操作即可合并高级语义提示和低级详细信息。但是,这会降低预测的质量,因为混乱和嘈杂的信息也可能会通过。为了解决这个问题,提出一个全局递归定位网络( global Recurrent Localization Net
2020-08-01 14:29:08 876
原创 显著目标检测之Cascaded Partial Decoder for Fast and Accurate Salient Object Detection(CPD)
文章目录摘要摘要
2020-07-21 23:27:36 4300
原创 显著性目标检测之Global Context-Aware Progressive Aggregation Network for Salient Object Detection(GCPANet)浅析
显著性目标检测——Global Context-Aware Progressive Aggregation Network for Salient Object Detection(GCPANet)浅析文章目录显著性目标检测——Global Context-Aware Progressive Aggregation Network for Salient Object Detection(GCPANet)浅析摘要简介显著性目标检测应用范围显著性目标检测发展现状显著性目标检测存在问题(基于FCN)GRAPN
2020-07-19 12:28:17 1871
原创 一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型简要分析
一种平衡准确性以及高效性的显著性目标检测深度卷积网络模型1.部分概念(1)超像素超像素最直观的解释,便是把一些具有相似特性的像素“聚合”起来,形成一个更具有代表性的大“元素”,而这个新的元素,将作为其他图像处理算法的基本单位,优点在于1.大大降低了维度;2.可以剔除一些异常像素点。...
2020-07-11 15:52:49 888
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人