显著性目标检测之Progressive Feature Polishing Network for Salient Object Detection(PFPN)

PFPN是一种用于显著物体检测的网络,通过逐步修饰多级特征,避免了传统方法的长期依赖问题。特征修饰模块(FPM)并行更新各级特征,直接融合高级信息,提高了显著物体检测的准确性。实验证明,PFPN在多个数据集上优于最新方法。
摘要由CSDN通过智能技术生成

摘要

特征对于显著物体检测很重要,现有方法主要集中在设计复杂的结构以合并多级特征并滤除混乱的特征上。而 Progressive Feature Polishing Network(PFPN)
是一个简单而有效的框架,用于逐步修饰多级特征,使其更加准确和具有代表性。通过以循环方式使用多个特征修饰模块(Feature Polishing Modules,FPM),能够检测出具有精细细节的显著物体,而无需任何后处理。FPM通过直接合并所有更高级别的上下文信息来并行更新每个级别的功能。此外,它可以保留特征图的尺寸和层次结构,这使其可以灵活地与任何基于CNN的模型集成。经验实验表明,随着FPM数量的增加,结果单调地变得更好。在各种情况下,PFPN在各种评估指标下的五个基准数据集上的性能远远优于最新方法。

简介

得益于CNN的层次结构,深度模型可以提取包含低级局部详细信息和高级全局语义的多级特征。为了利用详细的语义信息,可以应用多级上下文信息与不同级别特征的级联或逐元素添加的直接集成。但是,由于特征可能在某些级别上混乱且不准确,因此这种简单的特征集成往往会得到次优的结果。因此,最新的有吸引力的进展集中在设计这些多级特征的复杂集成上。

多级特征复杂集成工作的弊端

但是,当前的方法存在许多的弊端,从三个方面来分析:
(1)许多方法采用U-Net之类的结构,即在特征聚合期间信息从高层次流向低层次,而BMPM使用在连续级别之间传递的双向消息来合并语义概念和详细信息。由于会引起长期依赖问题,因此在多级功能之间间接执行的集成可能会不够用。
(2)其他工作以从浅到深的方式递归完善了预测结果以补充细节。但是,预测的显著性图丢失了丰富的信息,并且精炼的能力受到限制。
(3)尽管可以通过设计复杂的结构以合并多级功能来引入有价值的先验知识,但此过程可能很复杂,并且结构可能缺乏通用性。

PFPN设计基本思路

为了充分利用语义和详细信息,提出一种新颖的渐进特征修饰网络(Progre

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值