图论入门
#A氪金带东
#题目:
实验室里原先有一台电脑(编号为1),最近氪金带师咕咕东又为实验室购置了N-1台电脑,编号为2到N。每台电脑都用网线连接到一台先前安装的电脑上。但是咕咕东担心网速太慢,他希望知道第i台电脑到其他电脑的最大网线长度,但是可怜的咕咕东在不久前刚刚遭受了宇宙射线的降智打击,请你帮帮他。
提示: 样例输入对应这个图,从这个图中你可以看出,距离1号电脑最远的电脑是4号电脑,他们之间的距离是3。 4号电脑与5号电脑都是距离2号电脑最远的点,故其答案是2。5号电脑距离3号电脑最远,故对于3号电脑来说它的答案是3。同样的我们可以计算出4号电脑和5号电脑的答案是4.
##输入:
输入文件包含多组测试数据。对于每组测试数据,第一行一个整数N (N<=10000),接下来有N-1行,每一行两个数,对于第i行的两个数,它们表示与i号电脑连接的电脑编号以及它们之间网线的长度。网线的总长度不会超过10^9,每个数之间用一个空格隔开。
##输出:
对于每组测试数据输出N行,第i行表示i号电脑的答案 (1<=i<=N).
#样例输入:
5
1 1
2 1
3 1
1 1
#样例输出:
3
2
3
4
4
图论的入门题目。这题要找的是每个点到图中其他点的最远距离
首先给一个结论(证明挺麻烦的):一个点在图中的最大距离,一定是到某一个端点的距离。端点则是树的直径的端点。
所以该做的就是:
从任一点开始,dfs找到一个最远的点(这一定是一个端点
从这一点继续开始,dfs找到最远的点(这一定是另外一个端点,同时获得了这点到所有点的距离
从另一个端点开始,dfs再找回来,得到了这点到所有点的距离。
然后取个max就能获得所有点到最远点的距离
所要求的工作就走完了。
当然找距离这件事bfs也可以orz
因为没权值
关于找最远距离那个,可以维护一个最远点标记和最大距离标记,然后dfs过程记录当前距离,然后不断更新
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
struct edge
{
int point1;
int value1;
edge(int _x,int _y)
:point1(_x),value1(_y)
{
}
};
vector<vector<edge> > x;
int max(int x,int y)
{
if(x>y)
return x;
else return y;
}
int max_length;
int zuizhang[1000000];
int fathest;
void dfs(int begin,int last,int length)
{
if(length>max_length)
{
max_length=length;
fathest=begin;
}
for(int i=0;i<x[begin].size();i++)
{
int _value=x[begin][i].value1;
int _point=x[begin][i].point1;
if(_point==last) continue;
dfs(_point,begin,length+_value);
zuizhang[_point]=max(zuizhang[_point],length+_value);
}
}
int main()
{
int n;
while(cin>>n)
{
max_length=0;
memset(zuizhang,0,sizeof(zuizhang));
x.clear();
int n1,m;
x.resize(n+5);
for(int i=1;i<n;i++)
{
scanf("%d%d",&n1,&m);
edge x1(n1,m);
//cout<<"hello";
x[i+1].push_back(x1);
//cout<<"hello";
edge x2(i+1,m);
x[n1].push_back(x2);
}
dfs(1,-1,0);
dfs(fathest,-1,0);
dfs(fathest,-1,0);
for(int i=1;i<=n;i++)
{
cout<<zuizhang[i]<<endl;
}
}
return 0;
}
#B戴好口罩
#题目:
新型冠状病毒肺炎(Corona Virus Disease 2019,COVID-19),简称“新冠肺炎”,是指2019新型冠状病毒感染导致的肺炎。
如果一个感染者走入一个群体,那么这个群体需要被隔离!
小A同学被确诊为新冠感染,并且没有戴口罩!!!!!!
危!!!
时间紧迫!!!!
需要尽快找到所有和小A同学直接或者间接接触过的同学,将他们隔离,防止更大范围的扩散。
众所周知,学生的交际可能是分小团体的,一位学生可能同时参与多个小团体内。
请你编写程序解决!戴口罩!!
#输入:
多组数据,对于每组测试数据:
第一行为两个整数n和m(n = m = 0表示输入结束,不需要处理),n是学生的数量,m是学生群体的数量。0 < n <= 3e4 , 0 <= m <= 5e2
学生编号为0~n-1
小A编号为0
随后,m行,每行有一个整数num即小团体人员数量。随后有num个整数代表这个小团体的学生。
#输出:
输出要隔离的人数,每组数据的答案输出占一行
#样例输入:
100 4
2 1 2
5 10 13 11 12 14
2 0 1
2 99 2
200 2
1 5
5 1 2 3 4 5
1 0
0 0
#样例输出:
4
1
1
相当朴素的并查集问题。并查集也可以理解为等价类。即:两个元素同一类就并进一个集合。
这题就是,接触过就并进一个集合,该集合有病人则视为该集合全是病人。并查集用一个father数组和一个往前找的递归函数实现。(初始化F(i)=i A和B并起来则是F(A)=B 找的时候找到F(i)=i才停止返回,否则进递归)
针对本题,还要记录下每个集合里面元素数量,加一个accest数组
#include<iostream>
using namespace std;
int father[1000000];
int accest[1000000];
int find(int i)
{
if(father[i]==i)
return i;
else return father[i]=find(father[i]);
}
bool unit(int x,int y)
{
x=find(x);y=find(y);
if(x==y) return false;
if(accest[x]>accest[x]) { accest[x]=(accest[x]+accest[y]); father[y]=x; }
else{ accest[y]=(accest[y]+accest[x]); father[x]=y;}
return true;
}
int main()
{
int n,m;
cin>>n>>m;
while(n!=0||m!=0)
{
for(int i=0;i<n;i++)
{
accest[i]=1;
father[i]=i;
}
for(int i=0;i<m;i++)
{
int k;
cin>>k;
int i1,i2;
cin>>i1;
for(int j=0;j<k-1;j++)
{
scanf("%d",&i2);
unit(i1,i2);
}
}
cout<<accest[find(0)]<<endl;
cin>>n>>m;
}
return 0;
}
#C掌握魔法的东东
#3题目:
东东在老家农村无聊,想种田。农田有 n 块,编号从 1~n。种田要灌氵
众所周知东东是一个魔法师,他可以消耗一定的 MP 在一块田上施展魔法,使得黄河之水天上来。他也可以消耗一定的 MP 在两块田的渠上建立传送门,使得这块田引用那块有水的田的水。 (1<=n<=3e2)
黄河之水天上来的消耗是 Wi,i 是农田编号 (1<=Wi<=1e5)
建立传送门的消耗是 Pij,i、j 是农田编号 (1<= Pij <=1e5, Pij = Pji, Pii =0)
东东为所有的田灌氵的最小消耗
##输入:
第1行:一个数n
第2行到第n+1行:数wi
第n+2行到第2n+1行:矩阵即pij矩阵
##输出:
东东最小消耗的MP值
##样例:
#样例输入:
4
5
4
4
3
0 2 2 2
2 0 3 3
2 3 0 4
2 3 4 0
#样例输出:
9
最小生成树问题,(克鲁斯卡尔算法板子题
可能最想问的就是,天上来的水咋办。。很简单,加一个零号节点,它到各点的距离就是所谓天上来的耗费。
关于克鲁斯卡尔算法
离散数学大家都学过的,不重复不重复(其实就是懒
所需要的并查集知识参考T2.。
克鲁斯卡尔算法步骤
1.把边从小到大排序
2.每次选一个边,如果边的两点不是一个集合,就并到一个集合,否则找下一个边
3.整个图只有一个连通分量的时候停止
优化方法:1.压缩路径 就是并查集找根的时候,顺便就把该元素往上一层挂,做到查一次就肯定压缩成两层
2.并的时候大树挂在小树上
#include<iostream>
#include<algorithm>
using namespace std;
int father[1000000];
int accest[1000000];
struct edge
{
int point1;
int point2;
int value1;
// int size;
edge() {
}
edge(int _x, int _z, int _y)
:point1(_x), point2(_z), value1(_y)
{
}
};
edge x[10000000];
bool cmp(edge x, edge y)
{
return x.value1 > y.value1;
}
int find(int i)
{
if (father[i] == i)
return i;
else return father[i] = find(father[i]);
}
bool unit(int x, int y)
{
x = find(x); y = find(y);
if (x == y) return false;
if (accest[x] > accest[x]) { accest[x] = (accest[x] + accest[y]); father[y] = x; }
else { accest[y] = (accest[y] + accest[x]); father[x] = y; }
return true;
}
int main()
{
int n;
cin >> n;
for (int i = 0; i <= n; i++)
{
father[i] = i;
accest[i] = 1;
}
int tx = 0;
for (int i = 1; i <= n; i++)
{
int w;
cin >> w;
edge x1(0, i, w);
x[tx] = x1;
tx++;
}
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= n; j++)
{
int a1;
cin >> a1;
if (j > i)
{
edge x1(i, j, a1);
x[tx] = x1;
tx++;
}
}
}
int ans = 0;
sort(x, x + tx, cmp);
for (int i = tx - 1; i >= 0; i--)
{
//cout<<"hello"<<endl;
if (find(x[i].point1) != find(x[i].point2))
{
unit(x[i].point1, x[i].point2);
ans += x[i].value1;
//cout<<"hello"<<endl;
}
}
cout << ans << endl;
return 0;
}
D数据中心
题目:
样例输入
4
5
1
1 2 3
1 3 4
1 4 5
2 3 8
3 4 2
样例输出
4
(就是csp 18-2-4)
题面很长请只关心这个
所以这个题是找,最小生成树最长边。。
比上一题还要像克鲁斯卡尔板子题
#include<iostream>
#include<algorithm>
using namespace std;
int father[1000000];
int accest[1000000];
struct edge
{
int point1;
int point2;
int value1;
edge() {
}
edge(int _x, int _z, int _y)
:point1(_x), point2(_z), value1(_y)
{
}
};
edge x[10000000];
bool cmp(edge x, edge y)
{
return x.value1 > y.value1;
}
int find(int i)
{
if (father[i] == i)
return i;
else return father[i] = find(father[i]);
}
bool unit(int x, int y)
{
x = find(x); y = find(y);
if (x == y) return false;
if (accest[x] > accest[x]) { accest[x] = (accest[x] + accest[y]); father[y] = x; }
else { accest[y] = (accest[y] + accest[x]); father[x] = y; }
return true;
}
int main()
{
int m;
cin>>m;
int max=0;
int n;
cin >> n;
int root;
cin>>root;
for (int i = 0; i <= n; i++)
{
father[i] = i;
accest[i] = 1;
}
int tx = 0;
int b1,b2,b3;
for(int i=0;i<n;i++)
{
cin>>b1>>b2>>b3;
edge x1(b1,b2,b3);
x[tx] = x1;
tx++;
}
int ans = 0;
sort(x, x + tx, cmp);
for (int i = tx - 1; i >= 0; i--)
{
if (find(x[i].point1) != find(x[i].point2))
{
unit(x[i].point1, x[i].point2);
max=x[i].value1;
}
}
cout << max << endl;
return 0;
}
改改T3 就是了/(懒