确认过眼神,这个貌似稳定度高一些

# -*- coding:utf-8 -*-

import pandas as pd
import pymysql
import sklearn
from sqlalchemy import create_engine
## 加上字符集参数,防止中文乱码
dbconn = pymysql.connect(
        host="127.0.0.1",
        database="yes",
        user="root",
        password="111111",
        port=3306,
        charset='utf8')
conn = create_engine('mysql+mysqldb://root:111111@localhost:3306/yes?charset=utf8')
#上面这一大段等同于conn = create_engine('mysql+mysqldb://root:111111@localhost:3306/test?charset=utf8')

# sql语句
sqlcmd = "select * from buildm"
sqlcmd1 = "select * from tobepre_N0509"

# 利用pandas 模块导入mysql数据
data = pd.read_sql(sqlcmd, dbconn)
wait = pd.read_sql(sqlcmd1, dbconn)#等待预测的数据



#shujubufen
X = data.drop([u'是否涨幅5个点',u'代码'],axis=1)
y = data[u'是否涨幅5个点']

wait1= wait.drop([u'代码'],axis=1)

#标准化  归一化#
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler(feature_range=(0,1))
scaler.fit(X)
scaler.fit(wait1)
print X.shape

X.fillna(value=0)
wait1.fillna(value=0)

#解决样本不均衡问题,大比小为10:3
from imblearn.over_sampling import RandomOverSampler
ratio = {1:6000,0:14601}
sm = RandomOverSampler(ratio=ratio,random_state=None)

# sm = SMOTE(random_state=42,m_neighbors=5,ratio=0.3)
X_res,y_res = sm.fit_sample(X,y)


#分成训练集和测试集
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X_res, y_res, test_size=0.3,random_state=None)#分测试集和训练集
#

#神经网络----------------z暂时没法用
# from sklearn.neural_network import MLPClassifier
# MLP = MLPClassifier(hidden_layer_sizes=(450,450,300),activation='tanh',solver='adam',learning_rate_init=.1,epsilon=.000000001)
# MLP.fit(X_train,y_train)
# y_pred = pd.DataFrame(MLP.predict(X_train))
# y_true = y_train
# y_pred1 = pd.DataFrame(MLP.predict(X_test))
# y_true1 = y_test
# print 'MLP'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)
#DT可用
from sklearn.tree import DecisionTreeClassifier

DT = DecisionTreeClassifier(criterion='entropy',splitter='best',min_samples_split=20,min_samples_leaf=10,random_state=13)
DT.fit(X_train,y_train)

y_pred = pd.DataFrame(DT.predict(X_train))
y_true = y_train
y_pred1 = pd.DataFrame(DT.predict(X_test))
y_true1 = y_test
# print 'DT'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)

#逻辑回归---------------------暂不可用
# from sklearn.linear_model import LogisticRegression
#
# LR = LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=2, fit_intercept=True, solver='lbfgs',  multi_class='ovr',max_iter=800)
# LR.fit(X_train,y_train)
#
# y_pred = pd.DataFrame(LR.predict(X_train))
# y_true = y_train
# y_pred1 = pd.DataFrame(LR.predict(X_test))
# y_true1 = y_test
# print 'LR'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)


#支持向量机
from sklearn.svm import SVC
SVC = SVC(C=1.0,kernel='rbf',gamma='auto',tol=0.001,probability=True)
SVC.fit(X_train,y_train)

y_pred = pd.DataFrame(SVC.predict(X_train))
y_true = y_train
y_pred1 = pd.DataFrame(SVC.predict(X_test))
y_true1 = y_test
# print 'SVC'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)

#ADABOOST决策树
from sklearn.ensemble import AdaBoostClassifier
ADA = AdaBoostClassifier(base_estimator=None,n_estimators=150, learning_rate=1.0, algorithm='SAMME')
ADA.fit(X_train,y_train)
#
# y_pred = pd.DataFrame(ADA.predict(X_train))
# y_true = y_train
# y_pred1 = pd.DataFrame(ADA.predict(X_test))
# y_true1 = y_test
# print 'ADA'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)


#随机森林
from sklearn.ensemble import RandomForestClassifier
rf=RandomForestClassifier(n_estimators=150,max_depth=5)
rf.fit(X_train,y_train)
#
# y_pred = pd.DataFrame(rf.predict(X_train))
# y_true = y_train
# y_pred1 = pd.DataFrame(rf.predict(X_test))
# y_true1 = y_test
# print 'rf'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)


#梯度树
from sklearn.ensemble import GradientBoostingClassifier
gdbt = GradientBoostingClassifier(loss='exponential',n_estimators=100,max_depth=5,min_samples_leaf=8)
gdbt.fit(X_train,y_train)
#
# y_pred = pd.DataFrame(gdbt.predict(X_train))
# y_true = y_train
# y_pred1 = pd.DataFrame(gdbt.predict(X_test))
# y_true1 = y_test
# print 'gdbt'
# print sklearn.metrics.confusion_matrix(y_true, y_pred)
# print sklearn.metrics.confusion_matrix(y_true1, y_pred1)

#knn
from sklearn import neighbors
from sklearn.neighbors import KNeighborsClassifier
KNN = KNeighborsClassifier(weights='uniform',algorithm='kd_tree',n_jobs=4,p=2,n_neighbors=7)
KNN.fit(X_train,y_train)


y_pred = pd.DataFrame(KNN.predict(X_train))
y_true = y_train
y_pred1 = pd.DataFrame(KNN.predict(X_test))
y_true1 = y_test
print 'KNN'
print sklearn.metrics.confusion_matrix(y_true, y_pred)
print sklearn.metrics.confusion_matrix(y_true1, y_pred1)

#开始拼接成果了
daima = pd.DataFrame(wait[u'代码'])#前面的U千万不可少



#开始拼接成果了
y1 = pd.DataFrame(DT.predict(wait1))
y1.columns=['y_DT']
# y2 = pd.DataFrame(MLP.predict(wait1))
# y2.columns=['y_MLP']
y_SVC = pd.DataFrame(SVC.predict(wait1))
y_SVC.columns=['y_SVC']
y3 = pd.DataFrame(ADA.predict(wait1))
y3.columns=['y_ADA']
y4 = pd.DataFrame(rf.predict(wait1))
y4.columns=['y_rf']
y5 = pd.DataFrame(gdbt.predict(wait1))
y5.columns=['y_gdbt']
# y6 = pd.DataFrame(LR.predict(wait1))
# y6.columns=['y_LR']
y7 = pd.DataFrame(KNN.predict(wait1))
y7.columns=['y_KNN']
yp = pd.DataFrame(gdbt.predict_proba(wait1))
yp.columns=['yp0','yp1']

#合并所需字段
jieguo = pd.DataFrame(pd.concat([daima,y_SVC,y1,y3,y4,y5,yp['yp1']],axis=1))#这一步是合并

jieguo['depiaoshu']=jieguo['y_ADA']*0.5+jieguo['y_rf']+jieguo['y_gdbt']+jieguo['y_DT']*0.8+jieguo['y_SVC']



pd.io.sql.to_sql(jieguo,"presult0509_py",con=conn,if_exists='replace')#只能说使用createegien的方式
1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值