1.有如下数据:
x 1 1.1 1.2 1.3 1.4
y 1.00000 1.23368 1.55271 1.99372 2.61170
利用本章介绍的几种插值方法对其进行插值,得到每隔0.05的结果。
%Interpolation using the four methods
x=[1 1.1 1.2 1.3 1.4];
y=[1.00000 1.23368 1.55271 1.99372 2.61170];
length_of_x=length(x);
scalar_x=x(1):0.05:x(length_of_x);
length_of_sx=length(scalar_x);
for i=1:length_of_sx
y_nearest(i)=interp1(x,y,scalar_x(i),'nearest');
y_linear(i)=interp1(x,y,scalar_x(i),'linear');
y_spline(i)=interp1(x,y,scalar_x(i),'spline');
y_cubic(i)=interp1(x,y,scalar_x(i),'pchip');
end
subplot(2,2,1),plot(x,y,'*'),hold on,plot(scalar_x,y_nearest),title('method=nearest');
subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_linear),title('method=linear');
subplot(2,2,3),plot(x,y,'*'),hold on,plot(scalar_x,y_spline),title('method=spline');
subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('method=pchip');
2.求函数y=e^x-x^5,初始点为x=8的解,并绘制图形。
f_h=@(x)exp(x)-x.^5;
[x1,y1]=fzero(f_h,8);
fplot(f_h,[x1-2,x1+2])
hold on
plot(x1,y1,'k*')
3.求下列函数的极值
(1)z=x^2-(y-1)^2
syms x y;
f=x.^2-(y-1).^2;
[x1,y1]=solve(diff(f,x),diff(f,y))
z=x1.^2-(y1-1).^2
(2)z=(x-y+1)^2
syms x y;
f=(x-y+1).^2;
[x1,y1]=solve(diff(f,x),diff(f,y))
z=(x1-y1+1).^2
4.计算下列积分。
(1)
fun=@(x)x+x.^3+x.^5;
q=integral(@(x)x+x.^3+x.^5,-1,1)
(2)
fun=@(x,y)(sin(y)).*(x+y)./(x.^2+4);
q=integral2(fun,1,10,1,10)