MATLAB基础教程第4章习题

1.有如下数据:

x   1                 1.1                          1.2                         1.3                       1.4

y   1.00000      1.23368                   1.55271                 1.99372               2.61170

利用本章介绍的几种插值方法对其进行插值,得到每隔0.05的结果。

%Interpolation using the four methods
x=[1 1.1  1.2 1.3 1.4];
y=[1.00000  1.23368  1.55271 1.99372 2.61170];
length_of_x=length(x);

scalar_x=x(1):0.05:x(length_of_x);
length_of_sx=length(scalar_x);
for i=1:length_of_sx
y_nearest(i)=interp1(x,y,scalar_x(i),'nearest');
y_linear(i)=interp1(x,y,scalar_x(i),'linear');
y_spline(i)=interp1(x,y,scalar_x(i),'spline');
y_cubic(i)=interp1(x,y,scalar_x(i),'pchip');
end
subplot(2,2,1),plot(x,y,'*'),hold on,plot(scalar_x,y_nearest),title('method=nearest');
subplot(2,2,2),plot(x,y,'*'),hold on,plot(scalar_x,y_linear),title('method=linear');
subplot(2,2,3),plot(x,y,'*'),hold on,plot(scalar_x,y_spline),title('method=spline');
subplot(2,2,4),plot(x,y,'*'),hold on,plot(scalar_x,y_cubic),title('method=pchip');

2.求函数y=e^x-x^5,初始点为x=8的解,并绘制图形。

f_h=@(x)exp(x)-x.^5;
[x1,y1]=fzero(f_h,8);
fplot(f_h,[x1-2,x1+2])
hold on
plot(x1,y1,'k*')

3.求下列函数的极值

(1)z=x^2-(y-1)^2

syms x y;
f=x.^2-(y-1).^2;
[x1,y1]=solve(diff(f,x),diff(f,y))
z=x1.^2-(y1-1).^2

(2)z=(x-y+1)^2

syms x y;
f=(x-y+1).^2;
[x1,y1]=solve(diff(f,x),diff(f,y))
z=(x1-y1+1).^2

4.计算下列积分。

(1)

fun=@(x)x+x.^3+x.^5;
q=integral(@(x)x+x.^3+x.^5,-1,1)

(2)

fun=@(x,y)(sin(y)).*(x+y)./(x.^2+4);
q=integral2(fun,1,10,1,10)

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值