排序:
默认
按更新时间
按访问量

windows7+opencv+caffe+linux安装总结

Introduce这一类网上教程很多,有的很好,有的不靠谱,今天我就把成功的几个总结在一起方便大家使用。在windows7下安装opencv3.0和caffe以及linux双系统网址如下:...

2018-05-15 14:14:06

阅读数:5

评论数:0

Python2 与 Python3的区别

概述#原稿地址:使用 2to3 将代码移植到 Python 3几乎所有的Python 2程序都需要一些修改才能正常地运行在Python 3的环境下。为了简化这个转换过程,Python 3自带了一个叫做2to3的实用脚本(Utility Script),这个脚本会将你的Python 2程序源文件作为...

2018-05-12 20:40:13

阅读数:23

评论数:0

计算机视觉——人脸检测与识别

原文参考: https://blog.csdn.net/u014568921/article/details/52816578人脸检测长文干货!走近人脸检测:从 VJ 到深度学习(上)长文干货!走近人脸检测:从VJ到深度学习(下)【Caffe实践】基于Caffe的人脸检测实现人脸检测——DDFD人...

2018-05-12 13:56:27

阅读数:33

评论数:0

一些值得关注的网址

       最近,总是能看到特别好的网站(知乎解答、博客等),欣喜之余,担心以后难有机会再次浏览里面内容。之前,使用过浏览器收藏网址功能,然而,遇到浏览器卸载,重装系统的情况时,之前的总结全部付诸东流,甚是可惜。因此,在这里汇总一下最近看到的比较好的网站,便于以后学习。也希望各位网友在评论区补充...

2018-03-02 14:56:48

阅读数:61

评论数:0

RNN,LSTM,GRU以及其变型

对于自然语言处理和时间序列问题,需要神经网络具有记忆特性,而传统神经网络并不能满足其要求。因此,具有记忆特性的神经网络结构相继被发明。包括RNN,LSTM,以及attention等。这里参考一些好的博文,可以从图解,公式,关键点解释和为什么会产生这种效果等方面理解这些算法;同时从前向传播到后向传播...

2018-02-11 15:49:08

阅读数:98

评论数:0

提高论文写作能力的方法论

转载于:http://www.sohu.com/a/150966243_7865811.要写好科研论文,必须先养成读英文文章的习惯,争取每天30-60分钟。刚开始可以选择以读英文报纸、英文新闻为主,逐渐转为读专业杂志。我会在近期专门写一篇博客文章介绍一套行之有效的增强读专业杂志能力的办法。2.写科...

2018-01-22 15:23:27

阅读数:120

评论数:0

计算机视觉学习总结

计算机视觉 工具:opencv+caffe+tensorflow+python+c++ 关注网址:斯坦福李飞飞-深度学习计算机视觉,计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接,https://arxiv.org/list/cs.AI/recent 关注期刊和会议:计算机视觉的顶级...

2017-11-20 20:32:05

阅读数:195

评论数:0

不平衡数据的分类评价指标总结

识别任务中混淆矩阵(Confusion Matrix)用于评价算法好坏的指标。下图是一个二分类问题的混淆矩阵: TP:正确肯定——实际是正例,识别为正例 FN:错误否定(漏报)——实际是正例,却识别成了负例 FP:错误肯定(误报)——实际是负例,却识别成了正例 TN:正确否...

2017-10-30 19:39:19

阅读数:255

评论数:0

激活函数总结(一)

Introduce激活函数可以理解为非线性映射,增加网络的复杂性。为什么这么说? 如图所示: 第一部分是对输入的加权求和的过程,是一个线性化表示。如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。如果使用的话,激活函数给神经元引入了非线性因素...

2017-10-30 16:43:31

阅读数:150

评论数:0

数据降维方法总结

Introduce经过这几天面试后,我发现数据降维这一块在工业界用的很多或者说必不可少,因此,这方面需要重点关注。今天,我将数据降维总结于此,包括他人成果,这里对他们的内容表示感谢。Method对数据降维作用有多个角度的理解。吴恩达在他的视频中说,降维是用于数据压缩,降低噪声,防止运行太慢内存太小...

2017-10-30 11:51:35

阅读数:360

评论数:0

机器学习的训练算法(优化方法)汇总——梯度下降法及其改进算法

Introduce 今天会说两个问题,第一,建议大脚多看看大牛的博客,可以涨姿势。。。例如: 1、侧重于语言编程和应用的廖雪峰 https://www.liaoxuefeng.com/ 2、侧重于高大上算法和开源库介绍的莫烦 https://morvanzhou.github.io/ 第二,加...

2017-10-23 21:32:25

阅读数:411

评论数:0

tensorflow安装

Introduce 这将近一个星期的tensorflow环境配置,发现了很多问题,对conda和pip有了更深入的认识,包括: 比较了 1、pip install tensorflow 2、conda install tensorflow 3、打开Anaconda Prompt,输入清华...

2017-10-21 16:46:40

阅读数:131

评论数:0

关于CNN的一些疑问总结

Introduce 很早就听说CNN这个硬骨头,但始终没有尝试去啃,更别说消化吸收和转化了!昨天尝试了CNN初探例程——MNIST,虽然有不少收获,但还有很多疑问,这里进行整理和统一解答,以便以后再看。 Q&A 1、如何计算卷积和池化后特征维度? 2、如何识别Tensorflow正在使...

2017-10-20 09:55:55

阅读数:81

评论数:0

卷积神经网络(CNN)和Tensorflow初探——MNIST

Introduce 之前,对于卷积神经网络(CNN)只停留在理论层面,基本专业术语(卷积层、池化层等),最多计算卷积后的值之类的。今天,依托于tensorflow官网例程,学习tensorflow框架同时进一步学习CNN,熟悉CNN中的超参数以及如何调超参数?为了以后复习方便,这次讲解会特别细! ...

2017-10-19 22:07:16

阅读数:208

评论数:0

xgboost的前世今生

https://www.2cto.com/kf/201607/528771.html

2017-10-10 23:40:15

阅读数:132

评论数:0

非数值型多分类问题——Kaggle旧金山犯罪类型分类问题

十一前面了一家公司——极智嘉(Geek++), 做物流分拣机器人的。去之前一直在考虑,还是挺兴奋的,因为终于找到一家将机器人和机器学习结合的公司(除了视觉和聊天)。但是始终没有想清楚物流分拣与数据挖掘有什么关系?换句话说,结合点在哪儿?直到和四位算法工程师交谈之后才逐渐明白。(具体做啥包括面试过程...

2017-10-07 17:05:42

阅读数:692

评论数:0

SVM的传奇故事——SVM知识点总结

Introduce SVM是机器学习算法工程师面试必问算法,原理、推导、应用场景、算法比较等等,遂总结于此,方便他人和自己复习! SVM SVM的核函数如何选取? https://www.zhihu.com/question/21883548 (1)如果特征维数很高,往往线性可分(SVM...

2017-09-15 16:51:25

阅读数:355

评论数:0

机器学习基础概念理解

最近在知乎上遇到一个测试题,检验自己对机器学习知识的掌握情况。好吧,觉得自己还没入门了,很多东西都不知道啊!于是乎,就把这些知识点总结下来,以便以后复习。而且,越来越多的信息表明,机器学习算法面试注重基础:算法原理以及背后的思考,自己的想法等等。当然,项目啥的必不可少这是后话了。 问题:ht...

2017-09-15 09:37:26

阅读数:321

评论数:0

剑指offer——python实现(面试必备)

原文:http://blog.csdn.net/u012505432/article/details/52071537 特别感谢原文作者,转载过来,深入研究! 2017年8月28日,开始刷题从剑指offer开始,python实现! 数据结构markdown格式 链表及常见操作 ...

2017-08-28 21:31:52

阅读数:8223

评论数:0

机器学习算法——KNN

Introduction 学完python基本用法、numpy、pandas等数据分析库、机器学习应用的基本流程,kaggle竞赛的简单实践之后,下一步计划系统学学机器学习算法。一方面,理解算法中超参数的含义和理解他们是如何影响模型性能,在模型调优的过程中可以手动调节;另一方面,理解每种算法的应用...

2017-08-07 17:41:34

阅读数:181

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭