排序:
默认
按更新时间
按访问量

人群统计

人群分析、人群计数 开源代码文献及数据库

2018-08-27 10:48:52

阅读数:50

评论数:0

ubuntu下安装matlab,caffe,CUDA,CUDNN

网上有很多安装教程,但有的很坑,有的可以,这里总结成功安装上述软件时参考的网址 1、ubuntu下安装matlab 2、ubuntu16.04 + cuda9.0(deb版)+Cudnn7.1 3、超详细配置Caffe(gpu版本+ubuntu16.04)考虑各种问题...

2018-08-27 10:35:49

阅读数:29

评论数:0

新安装ubuntu需要解决的问题汇总

1、source源配置: 图形界面修改源,将默认的源修改成一个比较快的源。 1.图形界面就可以修改,打开Ubuntu软件中心,点击顶部面板的“编辑”然后就可看到“软件源”选项了。 2.点击之后填出软件源编辑窗口,选择“其他站点”。 3.可以选择最佳服务器,也可以直接在左边选择一个你觉得快的...

2018-08-22 15:53:52

阅读数:29

评论数:0

数字图像处理——pillow,scikit_image,dali(英伟达)

目前基于python 的图像处理库有很多,比如传统的opencv。但是这里将通过网址总结的形式介绍最近常用的图像处理库,用于图像增强等。 1、python skimage图像处理(一)、(二)、(三) 2、...

2018-08-21 16:57:22

阅读数:74

评论数:0

计算机视觉方向数据集(转)

  转自:https://blog.csdn.net/qq_14845119/article/details/51913171 ImageNet          ImageNet是一个计算机视觉系统识别项目,是目前世界上图像识别最大的数据库。是美国斯坦福的计算机科学家李飞飞模拟人类的识别系...

2018-08-20 15:35:55

阅读数:57

评论数:0

VMWare、SVN、Linux遇到问题及解决方法

1、VMware Tools安装 与环境配置 2、SVN安装与教程 3、Linux命令与查询 4、Authorization failed解决办法 5、Authorization failed解决办法2 6、Authorization failed解决办法3——服务器赋予客户端的文件下载...

2018-07-04 15:57:23

阅读数:71

评论数:0

计算机视觉开源代码集合(转)

声明:本文转载:http://www.ihalcon.com/read-3733.html一、特征提取Feature Extraction:SIFT [1] [Demo program][SIFT Library] [VLFeat]PCA-SIFT [2] [Project]Affine-SIFT...

2018-06-20 21:44:52

阅读数:94

评论数:0

windows7+opencv+caffe+linux安装总结

Introduce 这一类网上教程很多,有的很好,有的不靠谱,今天我就把成功的几个总结在一起方便大家使用。在windows7下安装opencv3.0和caffe以及linux双系统 网址如下: 1、VS2013下OpenCV3.0环境配置 Note: 1、opencv和VS版本要匹配,最好...

2018-05-15 14:14:06

阅读数:60

评论数:0

Python2 与 Python3的区别

概述# 原稿地址:使用 2to3 将代码移植到 Python 3 几乎所有的Python 2程序都需要一些修改才能正常地运行在Python 3的环境下。为了简化这个转换过程,Python 3自带了一个叫做2to3的实用脚本(Utility Script),这个脚本会将你的Python 2程序源...

2018-05-12 20:40:13

阅读数:70

评论数:0

计算机视觉——人脸检测与识别

原文参考: https://blog.csdn.net/u014568921/article/details/52816578人脸检测长文干货!走近人脸检测:从 VJ 到深度学习(上)长文干货!走近人脸检测:从VJ到深度学习(下)【Caffe实践】基于Caffe的人脸检测实现人脸检测——DDFD人...

2018-05-12 13:56:27

阅读数:194

评论数:0

一些值得关注的网址

       最近,总是能看到特别好的网站(知乎解答、博客等),欣喜之余,担心以后难有机会再次浏览里面内容。之前,使用过浏览器收藏网址功能,然而,遇到浏览器卸载,重装系统的情况时,之前的总结全部付诸东流,甚是可惜。因此,在这里汇总一下最近看到的比较好的网站,便于以后学习。也希望各位网友在评论区补充...

2018-03-02 14:56:48

阅读数:146

评论数:0

RNN,LSTM,GRU以及其变型

对于自然语言处理和时间序列问题,需要神经网络具有记忆特性,而传统神经网络并不能满足其要求。因此,具有记忆特性的神经网络结构相继被发明。包括RNN,LSTM,以及attention等。这里参考一些好的博文,可以从图解,公式,关键点解释和为什么会产生这种效果等方面理解这些算法;同时从前向传播到后向传播...

2018-02-11 15:49:08

阅读数:190

评论数:0

提高论文写作能力的方法论

转载于:http://www.sohu.com/a/150966243_7865811.要写好科研论文,必须先养成读英文文章的习惯,争取每天30-60分钟。刚开始可以选择以读英文报纸、英文新闻为主,逐渐转为读专业杂志。我会在近期专门写一篇博客文章介绍一套行之有效的增强读专业杂志能力的办法。2.写科...

2018-01-22 15:23:27

阅读数:299

评论数:0

计算机视觉学习总结

计算机视觉 工具:opencv+caffe+tensorflow+python+c++ 关注网址:斯坦福李飞飞-深度学习计算机视觉,计算机视觉领域的一些牛人博客,超有实力的研究机构等的网站链接,https://arxiv.org/list/cs.AI/recent 关注期刊和会议:计算机视觉的顶级...

2017-11-20 20:32:05

阅读数:299

评论数:0

不平衡数据的分类评价指标总结

识别任务中混淆矩阵(Confusion Matrix)用于评价算法好坏的指标。下图是一个二分类问题的混淆矩阵: TP:正确肯定——实际是正例,识别为正例 FN:错误否定(漏报)——实际是正例,却识别成了负例 FP:错误肯定(误报)——实际是负例,却识别成了正例 TN:正确否...

2017-10-30 19:39:19

阅读数:1034

评论数:0

激活函数总结(一)

Introduce激活函数可以理解为非线性映射,增加网络的复杂性。为什么这么说? 如图所示: 第一部分是对输入的加权求和的过程,是一个线性化表示。如果不用激励函数,每一层输出都是上层输入的线性函数,无论神经网络有多少层,输出都是输入的线性组合。如果使用的话,激活函数给神经元引入了非线性因素...

2017-10-30 16:43:31

阅读数:199

评论数:0

数据降维方法总结

Introduce经过这几天面试后,我发现数据降维这一块在工业界用的很多或者说必不可少,因此,这方面需要重点关注。今天,我将数据降维总结于此,包括他人成果,这里对他们的内容表示感谢。Method对数据降维作用有多个角度的理解。吴恩达在他的视频中说,降维是用于数据压缩,降低噪声,防止运行太慢内存太小...

2017-10-30 11:51:35

阅读数:749

评论数:0

机器学习的训练算法(优化方法)汇总——梯度下降法及其改进算法

Introduce 今天会说两个问题,第一,建议大脚多看看大牛的博客,可以涨姿势。。。例如: 1、侧重于语言编程和应用的廖雪峰 https://www.liaoxuefeng.com/ 2、侧重于高大上算法和开源库介绍的莫烦 https://morvanzhou.github.io/ 第二,加...

2017-10-23 21:32:25

阅读数:870

评论数:0

tensorflow安装

Introduce 这将近一个星期的tensorflow环境配置,发现了很多问题,对conda和pip有了更深入的认识,包括: 比较了 1、pip install tensorflow 2、conda install tensorflow 3、打开Anaconda Prompt,输入清华...

2017-10-21 16:46:40

阅读数:175

评论数:0

关于CNN的一些疑问总结

Introduce 很早就听说CNN这个硬骨头,但始终没有尝试去啃,更别说消化吸收和转化了!昨天尝试了CNN初探例程——MNIST,虽然有不少收获,但还有很多疑问,这里进行整理和统一解答,以便以后再看。 Q&A 1、如何计算卷积和池化后特征维度? 2、如何识别Tensorflow正在使...

2017-10-20 09:55:55

阅读数:107

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭