机器学习——Feature Engineering
sqiu_11
“取乎其上,得乎其中;取乎其中,得乎其下;取乎其下,则无所得矣”
展开
-
机器学习——正则化 (L1与L2范数)
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。原创 2017-03-02 21:03:46 · 8110 阅读 · 1 评论 -
sklearn学习——特征工程(特征选择)
##什么是特征工程?##定义:特征工程是将原始数据转化为特征,更好表示预测模型处理的实际问题,提升对于未知数据的准确性。它是用目标问题所在的特定领域知识或者自动化的方法来生成、提取、删减或者组合变化得到特征。原创 2017-03-02 12:12:44 · 27754 阅读 · 2 评论