大疆M30T 与 御2行业进阶版的热红外图像合成正射影像

DJI M30T 与 御2行业进阶版的热红外jpg转tiff脚本使用方法

20230714更新:已将脚本上传Github

使用环境

测试环境为Windows10 64位

依赖包

python==3.7

numpy==1.17.0

piexif==1.1.3

pillow==9.1.1

使用方法

    # 输入和输出目录
    input_dir = "input_dir"
    temp_dtr = "temp_dir"
    output_dir = 'out_dir'

input_dir为拍摄的红外相片的文件夹

temp_dtr为存储数据用的临时文件夹

output_dir为保存tiff图像结果的文件夹

先将要合成的图像复制进input_dir文件夹,然后运行main.py即可。

使用效果

采集图像

我这里使用的御2行业进阶版基于航线规划拍摄的热红外图像

在这里插入图片描述

将jpg图像转化为tiff格式

转化完成后,可以发现图像的位置信息能够得以保留

在这里插入图片描述

使用pix4D对tiff图像进行合成

pix4D下载链接

添加图像

在这里插入图片描述

可以看到,导入的图像有位置信息,但是没有相机型号(一个小缺点)

在这里插入图片描述

选择thermal camera

在这里插入图片描述

开始处理

在这里插入图片描述

最后即可得到温度值的图

在这里插入图片描述

也可生成指数图,根据需要生成相应的shp文件或Geotiff文件

在这里插入图片描述

### 大疆无人机红外图像拼接的方法工具 #### 选择合适的软件 Photoscan 软件能够用于无人机遥感图像的拼接工作[^2]。该软件提供了强大的图像处理能力,支持多种类型的图像输入,包括可见光和多光谱图像。 #### 图像预处理 对于由大疆2行业进阶(M2EA)获取到的 R-JPEG 格式的红外照片,在进行任何进一步的操作之前,需先通过特定的方式转换这些文件以便于后续加工。可以利用 Python 编写脚本来批量读取原始图片并将其保存为 TIFF 文件格式,从而保留每个像素所代表的真实温度信息而非简单的颜色编码[^4]。 ```python from PIL import Image, ExifTags import numpy as np import tifffile def convert_rjpeg_to_tiff(input_path, output_path): img = Image.open(input_path) exif_data = {ExifTags.TAGS[k]: v for k, v in img._getexif().items() if k in ExifTags.TAGS} thermal_min = exif_data['OECF'][0] thermal_max = exif_data['OECF'][1] raw_bytes = np.array(img.getdata(), dtype=np.uint8).reshape((img.height, img.width)) normalized_img = (raw_bytes - thermal_min) / (thermal_max - thermal_min) temperature_array = normalized_img * (thermal_max - thermal_min) + thermal_min tifffile.imwrite(output_path, data=temperature_array.astype(np.float32), photometric='minisblack') ``` #### 正射校正镶嵌图创建 完成上述准备工作之后,则可借助专业的摄影测量学应用程序如 Pix4Dmapper 或者 Agisoft Metashape 来执行实际的地图构建任务。这类程序允许导入一系列重叠良好的空中视角影像作为数据源,并自动计算它们之间的相对位置关系进而生成无缝连接的大范围视图。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值