10、JR 中的操作继承与调用选择机制深入解析

JR 中的操作继承与调用选择机制深入解析

1. 操作继承概述

在编程领域,操作继承是一个重要的概念,它允许子类对从父类继承的操作进行重新定义和扩展。在 JR 中,操作继承有着独特的规则和应用场景。

操作分为两种类型:与方法关联的 ProcOp 和由 inni 语句服务的 InOp。JR 允许子类将继承的操作重新定义为 ProcOp 或 InOp,而不考虑该操作在父类中的实现方式。以下是操作重新定义的不同组合情况:
| 原操作类型 | 重新定义后的操作类型 | 操作说明 |
| — | — | — |
| ProcOp | ProcOp | 类似于标准 Java 中的方法重定义,子类可重新定义与操作关联的方法,实现操作的特化。 |
| InOp | InOp | InOp 的实现并非重新定义,而是扩展。子类可通过显式重新声明操作,将服务该操作的 inni 语句添加到实现操作的语句集中,同时可以放宽访问限制,但不会创建单独的调用队列。 |
| ProcOp | InOp | 子类通过显式重新声明操作且不定义签名兼容的方法,将 ProcOp 重新定义为 InOp,会忽略从父类继承的签名兼容方法。 |
| InOp | ProcOp | 子类通过重新声明操作并定义签名兼容的方法,将 InOp 重新定义为 ProcOp。 |

2. 操作继承示例
2.1 操作服务分发示例

将 ProcOp 重新定义为 InOp 可用于在不改变客户端的情况下分发操作调用的服务。以下是一个简单的示例,展示了如何通过操作重新定义实现服务分发:


                
Kriging_NSGA3_Topsis克里金预测模型做代理模型多目标遗传3代结合熵权法反求最佳因变量及自变量(Matlab代码实现)内容概要:本文介绍了基于克里金(Kriging)代理模型、多目标遗传算法NSGA-III和TOPSIS决策方法相结合的技术路线,用于反求最优的因变量及对应的自变量组合。该方法首先利用克里金模型对复杂系统进行近似建模,降低计算成本;随后通过NSGA-III算法进行三代多目标优化,获得帕累托前沿解集;最后结合熵权法确定各目标权重,并使用TOPSIS方法从解集中筛选出最接近理想解的最佳方案。整个流程在Matlab平台上实现,适用于工程优化中高耗时仿真模型的替代多目标折衷分析。; 适合人群:具备一定数学建模基础和Matlab编程能力的研究生、科研人员及从事工程优化设计的工程师;熟悉代理模型、遗传算法多属性决策方法的学习者优先。; 使用场景及目标:①解决计算昂贵的多目标优化问题,如结构设计、能源系统参数优化等;②掌握克里金代理模型构建、NSGA-III算法应用及熵权-TOPSIS集成决策的全流程实现;③复现高水平学术论文中的优化方法,提升科研创新能力。; 阅读建议:建议读者结合提供的Matlab代码逐步调试运行,理解每一步的数据流向算法逻辑,重点关注代理模型精度验证、NSGA-III参数设置及熵权法权重计算过程,以实现对整体方法的深入掌握灵活应用。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值