C++---背包模型---采药(每日一道算法2023.3.7)

文章描述了一个关于动态规划的编程问题,即在给定时间和不同采摘成本的条件下,如何计算出最大草药价值。这是一个01背包问题的变种,通过填充值和权重来优化。程序使用了经典的01背包模板,通过双重循环更新最大价值数组f[],从而找出最优解。
摘要由CSDN通过智能技术生成

注意事项:
本题是"动态规划—01背包"的扩展题,dp和优化思路不多赘述。

题目:
辰辰是个天资聪颖的孩子,他的梦想是成为世界上最伟大的医师。
为此,他想拜附近最有威望的医师为师。
医师为了判断他的资质,给他出了一个难题。
医师把他带到一个到处都是草药的山洞里对他说:“孩子,这个山洞里有一些不同的草药,采每一株都需要一些时间,每一株也有它自身的价值。我会给你一段时间,在这段时间里,你可以采到一些草药。如果你是一个聪明的孩子,你应该可以让采到的草药的总价值最大。”
如果你是辰辰,你能完成这个任务吗?

输入格式
输入文件的第一行有两个整数 T和 M,用一个空格隔开,T代表总共能够用来采药的时间,M代表山洞里的草药的数目。
接下来的 M行每行包括两个在 1到 100之间(包括 1和 100)的整数,分别表示采摘某株草药的时间和这株草药的价值。

输出格式
输出文件包括一行,这一行只包含一个整数,表示在规定的时间内,可以采到的草药的最大总价值。

数据范围
1≤T≤1000,
1≤M≤100

输入:
70 3
71 100
69 1
1 2
输出:
3
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];

int main () {
    cin >> m >> n;	//和01背包唯一不同的点,先接受体积m,再接收数量n
    for (int i = 1; i<=n; i++) cin >> v[i] >> w[i];
    
    //01背包模板
    for (int i = 1; i<=n; i++) {
        for (int j = m; j>=v[i]; j--) {
            f[j] = max(f[j], f[j-v[i]] + w[i]);
        }
    }
    
    cout << f[m];
}

思路:
就是01背包的裸题,没啥可讲,思路去01背包那道里面看吧

声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值