注意事项:
本题是"背包模型—背包问题求具体方案"和"dp动态规划—分组背包"的扩展题,建议先理解这两个再来做这道会帮助很大。
题目:
总公司拥有 M台 相同 的高效设备,准备分给下属的 N个分公司。
各分公司若获得这些设备,可以为国家提供一定的盈利。盈利与分配的设备数量有关。
问:如何分配这M台设备才能使国家得到的盈利最大?
求出最大盈利值。
分配原则:每个公司有权获得任意数目的设备,但总台数不超过设备数 M。
输入格式
第一行有两个数,第一个数是分公司数 N,第二个数是设备台数 M;
接下来是一个 N×M的矩阵,矩阵中的第 i行第 j列的整数表示第 i个公司分配 j台机器时的盈利。
输出格式
第一行输出最大盈利值;
接下 N行,每行有 2个数,即分公司编号和该分公司获得设备台数。
答案不唯一,输出任意合法方案即可。
数据范围
1≤N≤10,
1≤M≤15
输入:
3 3
30 40 50
20 30 50
20 25 30
输出:
70
1 1
2 1
3 1
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 20;
int n, m;
int w[N][N], f[N][N];
int p[N], c = 0;
//和求具体方案那题的思路一样,只不过是换成了递归的方式,不理解可以去那篇文章看,有详细讲解
void dfs(int i, int j) {
if (i <= 0) return;
for (int k = 0; k<=j; k++) {
if (f[i][j] == f[i-1][j-k]+w[i][k]) {
p[c++] = k;
dfs(i-1, j-k);
return;
}
}
}
int main() {
//读入
cin >> n >> m;
for (int i = 1; i<=n; i++) {
for (int j =1; j<=m; j++) cin >> w[i][j];
}
//分组背包dp,不理解的话可以去看那篇文章,有详细讲解
for (int i = 1; i<=n; i++) {
for (int j = 1; j<=m; j++) {
f[i][j] = f[i-1][j];
for (int k = 0; k<=j; k++) {
f[i][j] = max(f[i][j], f[i-1][j-k]+w[i][k]);
}
}
}
cout << f[n][m] << endl;
//输出分公司编号和该分公司获得设备台数,其实就是输出方案/找最短路,也就是找如何从f[0][0]转移到f[n][m]。
dfs(n, m);
for (int id = 1; c > 0; id++) cout << id << " " << p[--c] << endl; //这里--c是因为计算c的时候是c++,所以c比实际上要多+1,那这里提前减去就行
return 0;
}
思路:
如何将题目转化为分组背包问题呢?
将每个公司看作为一个物品组,因为不管第i个公司选几台机器,我们都可以将其转换从第i组选一件物品,体积是k台机器,价值是选k台机器时公司i能产生的价值,这样就完美的转换为了分组背包问题。
那接下来就还是经典的y式dp法:
1.状态表示:
f[i][j]
:对于前i组物品,体积为j时的所有选择方案,属性为Max(收益最大)。
2.状态转移:
以第i组中 选择/不选择 作为划分,
不选第i组的物品:
f[i][j] = f[i-1][j]
选第i组的物品:
f[i][j] = max(f[i-1][j-v1]+w1, f[i-1][j-v2]+w2, ... , f[i-1][j-vn]+wn)
最后再提一下如何得到具体方案,
其实和"背包模型—背包问题求具体方案"这题基本一样,我懒得再写一遍了哎嘿,唯一的不同就是那一题用的是循环来判断每件物品,而本题用了另一种方法,深搜dfs来判断每件物品有没有被选取,
本质都是在判断是从dp的两条分支中的哪一条转移过来的。
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流