C++---背包模型---机器分配(每日一道算法2023.3.18)

文章介绍了如何使用动态规划解决一个总公司向多个分公司分配设备以最大化盈利的问题。首先将分公司视为物品组,然后通过分组背包的动态规划方法求解最大盈利值。接着,通过深度优先搜索(DFS)获取具体的分配方案。最后,文章提供了输入输出示例和完整的C++代码实现。
摘要由CSDN通过智能技术生成

注意事项:
本题是"背包模型—背包问题求具体方案""dp动态规划—分组背包"的扩展题,建议先理解这两个再来做这道会帮助很大。

题目:
总公司拥有 M台 相同 的高效设备,准备分给下属的 N个分公司。
各分公司若获得这些设备,可以为国家提供一定的盈利。盈利与分配的设备数量有关。
问:如何分配这M台设备才能使国家得到的盈利最大?
求出最大盈利值。
分配原则:每个公司有权获得任意数目的设备,但总台数不超过设备数 M。

输入格式
第一行有两个数,第一个数是分公司数 N,第二个数是设备台数 M;
接下来是一个 N×M的矩阵,矩阵中的第 i行第 j列的整数表示第 i个公司分配 j台机器时的盈利。

输出格式
第一行输出最大盈利值;
接下 N行,每行有 2个数,即分公司编号和该分公司获得设备台数。
答案不唯一,输出任意合法方案即可。

数据范围
1≤N≤10,
1≤M≤15

输入:
3 3
30 40 50
20 30 50
20 25 30
输出:
70
1 1
2 1
3 1
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 20;
int n, m;
int w[N][N], f[N][N]; 	
int p[N], c = 0;

//和求具体方案那题的思路一样,只不过是换成了递归的方式,不理解可以去那篇文章看,有详细讲解
void dfs(int i, int j) {
    if (i <= 0) return;
    for (int k = 0; k<=j; k++) {
        if (f[i][j] == f[i-1][j-k]+w[i][k]) {
            p[c++] = k;
            dfs(i-1, j-k);
            return;
        }
    }
}

int main() {
    //读入
    cin >> n >> m;
    for (int i = 1; i<=n; i++) {
        for (int j =1; j<=m; j++) cin >> w[i][j];
    }

    //分组背包dp,不理解的话可以去看那篇文章,有详细讲解
    for (int i = 1; i<=n; i++) {
        for (int j = 1; j<=m; j++) {
            f[i][j] = f[i-1][j];
            for (int k = 0; k<=j; k++) {
                f[i][j] = max(f[i][j], f[i-1][j-k]+w[i][k]);
            }
        }
    }
    cout << f[n][m] << endl;

    //输出分公司编号和该分公司获得设备台数,其实就是输出方案/找最短路,也就是找如何从f[0][0]转移到f[n][m]。
    dfs(n, m);
    for (int id = 1; c > 0; id++) cout << id << " " << p[--c] << endl;  //这里--c是因为计算c的时候是c++,所以c比实际上要多+1,那这里提前减去就行
    return 0;
}

思路:
如何将题目转化为分组背包问题呢?
将每个公司看作为一个物品组,因为不管第i个公司选几台机器,我们都可以将其转换从第i组选一件物品,体积是k台机器,价值是选k台机器时公司i能产生的价值,这样就完美的转换为了分组背包问题。

那接下来就还是经典的y式dp法:
1.状态表示:
f[i][j]:对于前i组物品,体积为j时的所有选择方案,属性为Max(收益最大)。

2.状态转移:
以第i组中 选择/不选择 作为划分,
不选第i组的物品:
f[i][j] = f[i-1][j]
选第i组的物品:
f[i][j] = max(f[i-1][j-v1]+w1, f[i-1][j-v2]+w2, ... , f[i-1][j-vn]+wn)

最后再提一下如何得到具体方案,
其实和"背包模型—背包问题求具体方案"这题基本一样,我懒得再写一遍了哎嘿,唯一的不同就是那一题用的是循环来判断每件物品,而本题用了另一种方法,深搜dfs来判断每件物品有没有被选取,
本质都是在判断是从dp的两条分支中的哪一条转移过来的。

如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!

声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值