注意事项:
本题是"动态规划—01背包"的扩展题,优化和dp的思路不多赘述。
题目:
金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。
更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过 N 元钱就行”。
今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的 N 元。
于是,他把每件物品规定了一个重要度,分为 5 等:用整数 1∼5 表示,第 5 等最重要。
他还从因特网上查到了每件物品的价格(都是整数元)。
他希望在不超过 N 元(可以等于 N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。
设第 j 件物品的价格为 v[j],重要度为 w[j],共选中了 k 件物品,编号依次为 j1,j2,…,jk
,
则所求的总和为: v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]
请你帮助金明设计一个满足要求的购物单。
输入格式
输入文件的第 1 行,为两个正整数 N 和 m,用一个空格隔开。(其中 N 表示总钱数,m 为希望购买物品的个数)
从第 2 行到第 m+1 行,第 j 行给出了编号为 j−1 的物品的基本数据,每行有 2 个非负整数 v 和 p。(其中 v表示该物品的价格,p 表示该物品的重要度)
输出格式
输出文件只有一个正整数,为不超过总钱数的物品的价格与重要度乘积的总和的最大值(数据保证结果不超过 108)。
数据范围
1≤N<30000,
1≤m<25,
0≤v≤10000,
1≤p≤5
输入:
1000 5
800 2
400 5
300 5
400 3
200 2
输出:
3900
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 30010;
int n, m; //n为总物品数量,m是总钱数(视为背包问题中的体积)
int v[N], w[N], f[N]; //v[i]第i物品的价格,w[i]第i个物品的价值(价格*重要度)
int main() {
//读入
cin >> m >> n;
for (int i = 1; i<=n; i++) {
int a, b;
cin >> a >> b;
v[i] = a;
w[i] = a*b; //(价格*重要度)
}
//一维滚动数组01背包
for (int i = 1; i<=n; i++) {
for (int j = m; j>=v[i]; j--) {
f[j] = max(f[j], f[j-v[i]] + w[i]);
}
}
cout << f[m];
return 0;
}
思路:
就是一道01背包的简单变形,唯一的不同点在于“重要度”这个东西,
但实际上可以将 “价格*重要度” 视作为物品的价值,也就转变为了一道01背包。
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流