C++---背包模型---混合背包问题(每日一道算法2023.3.23)

文章介绍了如何使用动态规划解决一种混合背包问题,包括01背包、完全背包和多重背包的组合。通过状态表示和不同的s[i]值进行状态转移,实现了在不超过背包容量的情况下,选取物品以获得最大价值。对于多重背包部分,还应用了二进制优化以避免超时。最后给出了算法的C++实现代码。
摘要由CSDN通过智能技术生成

注意事项:
本题为"动态规划—完全背包""动态规划—01背包""dp动态规划—多重背包" 的扩展题,建议先理解这些会对本题帮助较大。

题目:
有 N 种物品和一个容量是 V 的背包。

物品一共有三类:
第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si 次(多重背包);每种体积是 vi,价值是 wi。

求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。

输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
si=−1 表示第 i 种物品只能用1次;si=0 表示第 i 种物品可以用无限次;si>0 表示第 i 种物品可以使用 si 次;

输出格式
输出一个整数,表示最大价值。

数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000

输入:
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出:
8
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 1010;
int n, m;
int v[N], w[N], s[N];       //v[i]第i个物品的体积,w[i]第i个物品的价值,s[i]第i个物品的模式(-1为01背包,0为完全背包,大于0为多重背包)
int f[N];

int main() {
    //读入
    cin >> n >> m;
    for (int i= 1; i<=n; i++) cin >> v[i] >> w[i] >> s[i];

    //dp,三种背包问题的状态表示其实完全一样,都是前i个物品中,体积不超过j时的最大价值,
    //那就直接根据不同的s[i]来进行不同的状态转移即可(这里把01背包视为特殊的多重背包,也就是s[i]为1)
    for (int i= 1; i<=n; i++) {
        if (s[i] == 0) { //完全背包
            for (int j = v[i]; j<=m; j++) f[j] = max(f[j], f[j-v[i]]+w[i]);
        }
        else {  //多重背包+二进制优化(二进制优化不理解的话可以取看“多重背包”那篇文章,有详解)
            if (s[i] == -1) s[i] = 1; //将01背包的情况转换为s[i]为1的多重背包
            for (int k = 1; k<=s[i]; k*=2) {
                for (int j = m; j>=k*v[i]; j--) {
                    f[j] = max(f[j], f[j-k*v[i]]+k*w[i]);
                }
                s[i] -= k;
            }
            for (int j = m; j>=s[i]*v[i]; j--) {
                f[j] = max(f[j], f[j-s[i]*v[i]]+s[i]*w[i]);
            }
        }
    }
    cout << f[m];
    return 0;
}

思路:
三种背包问题的状态表示其实完全一样,
f[i][j]:前i个物品中,体积不超过j时的所有方案,属性为Max。

那就直接根据不同的s[i]来进行不同的状态转移即可。
(这里把01背包视为特殊的多重背包,也就是s[i]为1)

还有就是暴力的话会超时,所以要二进制优化与一下多重背包。

如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!

声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值