注意事项:
本题为"动态规划—完全背包"和"动态规划—01背包"和"dp动态规划—多重背包" 的扩展题,建议先理解这些会对本题帮助较大。
题目:
有 N 种物品和一个容量是 V 的背包。
物品一共有三类:
第一类物品只能用1次(01背包);
第二类物品可以用无限次(完全背包);
第三类物品最多只能用 si 次(多重背包);每种体积是 vi,价值是 wi。
求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。
输出最大价值。
输入格式
第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。
接下来有 N 行,每行三个整数 vi,wi,si,用空格隔开,分别表示第 i 种物品的体积、价值和数量。
si=−1 表示第 i 种物品只能用1次;si=0 表示第 i 种物品可以用无限次;si>0 表示第 i 种物品可以使用 si 次;
输出格式
输出一个整数,表示最大价值。
数据范围
0<N,V≤1000
0<vi,wi≤1000
−1≤si≤1000
输入:
4 5
1 2 -1
2 4 1
3 4 0
4 5 2
输出:
8
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N], s[N]; //v[i]第i个物品的体积,w[i]第i个物品的价值,s[i]第i个物品的模式(-1为01背包,0为完全背包,大于0为多重背包)
int f[N];
int main() {
//读入
cin >> n >> m;
for (int i= 1; i<=n; i++) cin >> v[i] >> w[i] >> s[i];
//dp,三种背包问题的状态表示其实完全一样,都是前i个物品中,体积不超过j时的最大价值,
//那就直接根据不同的s[i]来进行不同的状态转移即可(这里把01背包视为特殊的多重背包,也就是s[i]为1)
for (int i= 1; i<=n; i++) {
if (s[i] == 0) { //完全背包
for (int j = v[i]; j<=m; j++) f[j] = max(f[j], f[j-v[i]]+w[i]);
}
else { //多重背包+二进制优化(二进制优化不理解的话可以取看“多重背包”那篇文章,有详解)
if (s[i] == -1) s[i] = 1; //将01背包的情况转换为s[i]为1的多重背包
for (int k = 1; k<=s[i]; k*=2) {
for (int j = m; j>=k*v[i]; j--) {
f[j] = max(f[j], f[j-k*v[i]]+k*w[i]);
}
s[i] -= k;
}
for (int j = m; j>=s[i]*v[i]; j--) {
f[j] = max(f[j], f[j-s[i]*v[i]]+s[i]*w[i]);
}
}
}
cout << f[m];
return 0;
}
思路:
三种背包问题的状态表示其实完全一样,
f[i][j]
:前i个物品中,体积不超过j时的所有方案,属性为Max。
那就直接根据不同的s[i]来进行不同的状态转移即可。
(这里把01背包视为特殊的多重背包,也就是s[i]为1)
还有就是暴力的话会超时,所以要二进制优化与一下多重背包。
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流