注意事项:
建议先了解状态机的基本定义:状态机-百度百科。
题目:
阿福是一名经验丰富的大盗。趁着月黑风高,阿福打算今晚洗劫一条街上的店铺。
这条街上一共有 N 家店铺,每家店中都有一些现金。
阿福事先调查得知,只有当他同时洗劫了两家相邻的店铺时,街上的报警系统才会启动,然后警察就会蜂拥而至。
作为一向谨慎作案的大盗,阿福不愿意冒着被警察追捕的风险行窃。
他想知道,在不惊动警察的情况下,他今晚最多可以得到多少现金?
输入格式
输入的第一行是一个整数 T,表示一共有 T 组数据。
接下来的每组数据,第一行是一个整数 N ,表示一共有 N 家店铺。
第二行是 N 个被空格分开的正整数,表示每一家店铺中的现金数量。
每家店铺中的现金数量均不超过1000。
输出格式
对于每组数据,输出一行。
该行包含一个整数,表示阿福在不惊动警察的情况下可以得到的现金数量。
数据范围
1≤T≤50,
1≤N≤10^5
输入:
2
3
1 8 2
4
10 7 6 14
输出:
8
24
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 100010
int n, m; //n为每组数据的店铺个数,m表示有几组数据
int w[N], f[N][2]; //w[i]为第i个店铺的现金
int main() {
cin >> m;
while (m--) {
cin >> n;
for (int i = 1; i<=n; i++) cin >> w[i];
//这里其实不初始化也一样,毕竟本身默认值就是0,但是要模拟启动状态机,是需要从一个初始状态转移过来的,还是要注意一下
f[0][0] = 0, f[0][1] = 0;
//根据状态机推导的公式直接计算一遍即可
for (int i = 1; i<=n; i++) {
f[i][0] = max(f[i-1][0], f[i-1][1]);
f[i][1] = f[i-1][0] + w[i];
}
cout << max(f[n][0], f[n][1]) << endl; //由于最大值可能处在不选n上,也可能处在选n上,所以取max即可
}
return 0;
}
思路:
状态机模型和01背包问题的区别就在于:01背包中每个物品选或不选都是独立的, 不受前者约束不对后者产生影响,而状态机的某个状态则可能对其他状态产生影响。
换成01那种状态之间的转化图来看,01背包中0和1的转化不受任何约束,也就是有向完全图,但是状态机不一样,由于某些条件下的边不存在,于是在计算本次状态之前就可能需要了解前一次的状态,于是需要状态细分标记。
还是经典的y式dp法:
1.状态表示
f[i][0]:
从前i
家店铺中选,当前店铺选择 不偷 的所有方案,属性为Max,
f[i][1]:
从前i
家店铺中选,当前店铺选择 偷 的所有方案,属性为Max,
2.状态计算
选择 偷/不偷 第i
家店铺:
1.不偷 (代表第i-1家店铺可以偷或不偷):f[i][0] = max(f[i-1][0], f[i-1][1])
,
2.偷 (代表第i-1家店铺不可以偷):f[i][1] = f[i-1][0] + w[i]
,
状态机画图如下(借用下彩铅大佬的图):
如果有所帮助请给个免费的赞吧~有人看才是支撑我写下去的动力!
声明:
算法思路来源为y总,详细请见https://www.acwing.com/
本文仅用作学习记录和交流