C++---区间DP---环形石子合并(每日一道算法2023.4.24)

文章介绍了如何使用动态规划解决环形排列的石子合并问题,目标是找到最大和最小的合并得分。通过复制数组形成环状结构,并进行DP计算,避免了额外的n次枚举,降低了时间复杂度。

注意事项:
本题是"区间dp—石子合并"的扩展题,dp思路完全一样,就不多详细讲了,可以去那篇文章看,这题主要讲一下如何处理环形。

题目:
将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆。
规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分。

请编写一个程序,读入堆数 n 及每堆的石子数,并进行如下计算:

  • 选择一种合并石子的方案,使得做 n−1 次合并得分总和最大。
  • 选择一种合并石子的方案,使得做 n−1 次合并得分总和最小。

输入格式
第一行包含整数 n,表示共有 n 堆石子。
第二行包含 n 个整数,分别表示每堆石子的数量。

输出格式
输出共两行:
第一行为合并得分总和最小值,
第二行为合并得分总和最大值。

数据范围
1≤n≤200

输入:
4
1 3 5 2
输出:
22
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;

const int N = 410, INF = 0x3f3f3f;      //N开两倍
int n, m, s[N], w[N];        //s存储前缀和,w存储原始值
int f[N][N], g[N][N];    //f存储max,g存储min

int main
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值