注意事项:
本题是"区间dp—石子合并"的扩展题,dp思路完全一样,就不多详细讲了,可以去那篇文章看,这题主要讲一下如何处理环形。
题目:
将 n 堆石子绕圆形操场排放,现要将石子有序地合并成一堆。
规定每次只能选相邻的两堆合并成新的一堆,并将新的一堆的石子数记做该次合并的得分。
请编写一个程序,读入堆数 n 及每堆的石子数,并进行如下计算:
- 选择一种合并石子的方案,使得做 n−1 次合并得分总和最大。
- 选择一种合并石子的方案,使得做 n−1 次合并得分总和最小。
输入格式
第一行包含整数 n,表示共有 n 堆石子。
第二行包含 n 个整数,分别表示每堆石子的数量。
输出格式
输出共两行:
第一行为合并得分总和最小值,
第二行为合并得分总和最大值。
数据范围
1≤n≤200
输入:
4
1 3 5 2
输出:
22
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 410, INF = 0x3f3f3f; //N开两倍
int n, m, s[N], w[N]; //s存储前缀和,w存储原始值
int f[N][N], g[N][N]; //f存储max,g存储min
int main

文章介绍了如何使用动态规划解决环形排列的石子合并问题,目标是找到最大和最小的合并得分。通过复制数组形成环状结构,并进行DP计算,避免了额外的n次枚举,降低了时间复杂度。
最低0.47元/天 解锁文章
483

被折叠的 条评论
为什么被折叠?



