题目:
173. 矩阵距离
给定一个 N 行 M 列的 01 矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:
dist(A[i][j],A[k][l])=|i−k|+|j−l|
输出一个 N 行 M 列的整数矩阵 B,其中:
B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1dist(A[i][j],A[x][y])
输入格式
第一行两个整数N,M。
接下来一个 N行 M 列的 01 矩阵,数字之间没有空格。
输出格式
一个 N行 M 列的矩阵 B,相邻两个整数之间用一个空格隔开。
数据范围
1≤N,M≤1000
输入样例:
3 4
0001
0011
0110
输出样例
3 2 1 0
2 1 0 0
1 0 0 1
key:主要是要读懂题意:
题意为:给出一个01矩阵,求出所有的点到1的最短距离。那么就是以各个1为起点,逐层扩展,bfs,求出到各个点的最短距离。
思路:
先将1的点加入队列,并更新d,然后依次取出并访问,进行bfs, bfs时注意范围的要求,如果满足要求,更新d并将ne加入队列
注意点:
1.记得初始化数组d为-1
2.是1的点d为0
3.边界条件的判定
代码如下:
#include <bits/stdc++.h>
using namespace std;
#define N 1010
typedef pair<int,int> PII;
int n,m;
char s[N][N];
int dx[4]={-1,1,0,0},dy[4]={0,0,-1,1};
int d[N][N];
queue<PII> q;//PII包含点的横纵坐标
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
memset(d,-1,sizeof(d));//记得初始化d数组为-1,因为有d为0的情况,所以不能初始化为0
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
if(s[i][j]=='1') {//起点
q.push(make_pair(i,j));
d[i][j]=0;//1到1的距离最短为自身,0
}
}
}
while(q.size()){
PII now = q.front();//取出队首
q.pop();
for(int k=0;k<4;k++){//扩展
PII ne=make_pair(now.first+dx[k],now.second+dy[k]);
if(ne.first<1||ne.first>n||ne.second<1||ne.second>m) continue;//范围
if(d[ne.first][ne.second]==-1){//如果没被访问过
d[ne.first][ne.second]=d[now.first][now.second]+1;//更新距离
q.push(ne); //加入队列
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=m;j++){
printf("%d ",d[i][j]);
}
puts("");//换行
}
return 0;
}