AcWing 173 矩阵距离 bfs

该博客介绍了如何通过广度优先搜索(BFS)算法解决给定01矩阵中,计算所有点到1的曼哈顿距离最小值的问题。代码示例展示了BFS的具体实现过程,包括初始化距离矩阵、加入起点到队列、逐层扩展并更新距离等步骤。
摘要由CSDN通过智能技术生成

题目:


173. 矩阵距离

给定一个 N 行 M 列的 01 矩阵 A,A[i][j] 与 A[k][l] 之间的曼哈顿距离定义为:

dist(A[i][j],A[k][l])=|i−k|+|j−l|

输出一个 N 行 M 列的整数矩阵 B,其中:

B[i][j]=min1≤x≤N,1≤y≤M,A[x][y]=1⁡dist(A[i][j],A[x][y])

输入格式

第一行两个整数N,M。

接下来一个 N行 M 列的 01 矩阵,数字之间没有空格。

输出格式

一个 N行 M 列的矩阵 B,相邻两个整数之间用一个空格隔开。

数据范围

1≤N,M≤1000

输入样例:

3 4
0001
0011
0110

输出样例

​3 2 1 0
2 1 0 0
1 0 0 1

key:主要是要读懂题意:

题意为:给出一个01矩阵,求出所有的点到1的最短距离。那么就是以各个1为起点,逐层扩展,bfs,求出到各个点的最短距离。

思路:

先将1的点加入队列,并更新d,然后依次取出并访问,进行bfs, bfs时注意范围的要求,如果满足要求,更新d并将ne加入队列

注意点:

1.记得初始化数组d为-1
2.是1的点d为0
3.边界条件的判定

代码如下:

#include <bits/stdc++.h>
using namespace std;
#define N 1010
typedef pair<int,int> PII;
int n,m;
char s[N][N];
int dx[4]={-1,1,0,0},dy[4]={0,0,-1,1};
int d[N][N];
queue<PII> q;//PII包含点的横纵坐标 
int main(){
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
	memset(d,-1,sizeof(d));//记得初始化d数组为-1,因为有d为0的情况,所以不能初始化为0 
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			if(s[i][j]=='1') {//起点 
				q.push(make_pair(i,j));
				d[i][j]=0;//1到1的距离最短为自身,0 
			}
		}
	}
	while(q.size()){
		PII now = q.front();//取出队首 
		q.pop();
		for(int k=0;k<4;k++){//扩展 
			PII ne=make_pair(now.first+dx[k],now.second+dy[k]);
			if(ne.first<1||ne.first>n||ne.second<1||ne.second>m) continue;//范围 
			if(d[ne.first][ne.second]==-1){//如果没被访问过 
				d[ne.first][ne.second]=d[now.first][now.second]+1;//更新距离 
				q.push(ne); //加入队列 
			}
		}
	}
	for(int i=1;i<=n;i++){
		for(int j=1;j<=m;j++){
			printf("%d ",d[i][j]);
		}
		puts("");//换行 
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值