斯坦福CS231n:计算机视觉笔记(烂尾了不用点开

(OneNote不太方便的地方在于没法建立目录跳转,于是决定直接写在CSDN上)

写着写着崩了。。。突然丢了一些东西。。。。回Onenote了。。。。。。。

数据处理

数据集建立

交叉验证:适合数据量小的数据集

 

 数据处理

  • 归一化(normalize)
  • 降维

方法

最近邻 (Nearest Neighbors)

取对应格点差的总和最小

K-最近邻 (KNN, K-Nearest Neighbors)

找到最近的K个点进行距离加权投票,使分类决策边界更平滑

超参数 hyperparameters: 如K和L1/L2范数的选择

  • K的选择:

  • 距离度量方式的选择:
    •         

        L1 Loss 平均绝对误差 Mean Absolute Error (MAE):

        依赖于坐标系统,可根据特征向量具有实际意义建立坐标

distances = np.sum(np.abs(self.Xtr - X[i,:]), axis = 1)

        L2 Loss 均方差损失 Mean Squared Error, MSE:极大似然估计

        不受坐标系的影响,适合不同向量都为通用向量或含义未知时,无法衡量图像的相似性

distances=np.sqrt(np.sum(np.square(self.Xtr-X[i,:]),axis=1))

        MSE 假设了误差服从高斯分布,MAE 假设了误差服从拉普拉斯分布。拉普拉斯分布本身对于 outlier 更加 robust。参考下图(来源:Machine Learning: A Probabilistic Perspective 2.4.3 The Laplace distribution Figure 2.8),当右图右侧出现了 outliers 时,拉普拉斯分布相比高斯分布受到的影响要小很多。因此以拉普拉斯分布为假设的 MAE 对 outlier 比高斯分布为假设的 MSE 更加 robust。

线性分类器

  • f(x,W)=Wx+b:每个类别只能识别一个单独的模板
    • W:参数矩阵

  •  损失函数 loss function:通过损失函数最小在训练集中找到最优W 
    • 合页损失函数 hinge loss(SVM):注重清晰划分正确和错误分类的边界

               eg: 

                    

                   *此处s_{yi}表示第i类正确分类的得分,+1为自由参数,可以自由选择

                       

  • 交叉熵损失 cross-entropy loss(softmax loss):刻画的是正确值和预测值两个概率分部之间的距离

                

  • 梯度下降                              

 写着写着崩了。。。突然丢了一些东西。。。。回Onenote了。。。。。。。

                 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值