java计算机毕业设计电影推荐系统(开题+程序+论文)

本系统(程序+源码)带文档lw万字以上 文末可获取一份本项目的java源码和数据库参考。

系统程序文件列表

开题报告内容

研究背景

随着互联网技术的飞速发展,电影作为一种重要的文化娱乐形式,已经成为人们日常生活中不可或缺的一部分。然而,面对海量的电影资源,用户往往难以快速找到符合自己兴趣的电影。传统的电影推荐方式,如基于热门排行或人工编辑的推荐,已经难以满足用户个性化、多样化的需求。因此,开发一个高效、智能的电影推荐系统显得尤为重要。该系统能够基于用户的个人喜好、观影历史以及电影的类型、评分等多维度信息,为用户量身定制电影推荐列表,提高用户的观影体验和满意度。

研究意义

电影推荐系统的研究不仅具有理论价值,更具有广泛的应用前景。在理论层面,该系统能够综合运用数据挖掘、机器学习等技术,实现对用户行为和电影特征的精准分析,为推荐算法的优化提供有力支持。在应用层面,该系统能够为用户提供个性化的电影推荐服务,帮助用户快速找到心仪的电影,提高观影效率。同时,对于电影制作方和发行方而言,该系统也能够提供有价值的用户反馈和市场分析,助力电影产业的繁荣发展。

研究目的

本研究的主要目的是开发一个功能完善的电影推荐系统,旨在通过智能化的推荐算法,实现对用户个性化需求的精准匹配。该系统将具备用户信息管理、电影类型分类、热门电影展示以及电影评分等功能,能够为用户提供丰富多样的电影选择。通过不断优化推荐算法和提高系统的智能化水平,本研究旨在提升用户的观影体验,促进电影产业的可持续发展。

研究内容

在电影推荐系统的研究中,我们将重点关注系统的核心功能构建与优化。首先,用户管理模块将实现用户信息的录入、更新与查询,为系统提供准确的用户画像。其次,电影类型分类模块将根据电影的题材、风格等特征进行细致划分,便于用户根据个人喜好进行筛选。热门电影展示模块将实时更新当前最受欢迎的电影列表,引导用户关注热门影片。电影评分模块则允许用户对已观看的电影进行打分和评论,为系统提供宝贵的用户反馈。此外,我们还将深入研究推荐算法的优化策略,如基于协同过滤、内容推荐等算法的融合应用,以提高推荐的准确性和多样性。通过这些功能的协同作用,电影推荐系统将为用户提供一个高效、便捷、个性化的观影体验。

进度安排:

2022年11月11日前:完成师生双选,指导老师下达任务书;

2023年1月13日前:经指导教师同意开题后,学生在毕设系统中完成提交开提报告;

2023年4月7日前:根据学生前期情况完成中期检查工作;

2023年5月5日前:审核通过毕业设计初稿,在指导教师审阅同意后,学生在毕设系统中提交查重稿。

2023年5月26日前:完成答辩等相关工作。

参考文献:

[1] 王帅, 刘磊. 测试驱动开发在Java程序设计课程实验教学中的应用[J]. 淮北师范大学学报(自然科学版), 2023, 44 (03): 83-87.

[2] 李正伟. 计算机软件JAVA编程特点及其技术运用研究[J]. 软件, 2021, 42 (03): 149-151.

[3] 王志辉. 基于Java开发的数据库迁移方法和系统设计[J]. 电脑知识与技术, 2022, 18 (17): 19-21.

[4] 孟维成. 对基于Java语言实现数据库的访问研究[J]. 软件, 2022, 43 (02): 169-171.

[5] 刘莹. 计算机软件开发中Java编程语言的应用研究[J]. 计算机产品与流通, 2020, (09): 42.

[6] 杜兆芳. 探析计算机应用软件开发中编程语言的选择[J]. 信息记录材料, 2023, 24 (07): 59-61.

[7] 冯志林. 冯志林. Java EE程序设计与开发实践教程[M]. 机械工业出版社: 202105. 353.

[8] 黄丽萍. 基于Java的Web软件程序框架分层设计探讨[J]. 信息记录材料, 2022, 23 (07): 74-76.

[9] 刘学玉. JAVA编程语言在计算机软件开发中的应用[J]. 电子技术与软件工程, 2022, (01): 57-60.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术+界面为准,可以酌情参考使用开题的内容。要源码参考请在文末进行获取!!

系统部署环境:

数据库MySQL 5.7: 流行的开源关系型数据库管理系统,用于存储和检索数据。

开发工具

  1. Eclipse: 开源的集成开发环境(IDE),广泛用于Java应用开发。
  2. IntelliJ IDEA: 一先进的IDE,用于Java开发,提供了丰富的工具和功能。

运行环境和构建工具

  1. Tomcat 7.0: 开源的Java Servlet容器和Web服务器。
  2. JDK 1.8: Java开发工具包,用于开发Java应用程序。
  3. Maven 3.3.9: 用于项目构建和依赖管理的工具。

开发技术:

前端技术

  1. HTML: 超文本标记语言,用于创建和设计网页的结构。
  2. CSS: 层叠样式表,用于定义网页的布局和样式。
  3. JavaScript (JS): 一种脚本语言,用于增加网页的交互性和动态功能。
  4. Vue.js: 一种渐进式JavaScript框架,用于构建用户界面和单页应用程序。

后端技术

  1. Java: 广泛使用的编程语言,适用于构建跨平台应用。
  2. Spring: 开源的Java平台,提供了全面的编程和配置模型。
  3. MyBatis: Java持久层框架,支持定制化SQL、存储过程以及高级映射。
  4. Maven: 项目管理和构建自动化工具,用于Java项目。

开发流程:

• 在这种开发技术模式下,系统的开发流程主要是前端专注于使用Vue.js构建动态和响应式的用户界面,同时通过Ajax技术与后端进行数据交换,实现了前后端的逻辑分离。后端SPRINGBOOT框架结合了Spring的依赖注入和事务管理、SpringMVC的模型-视图-控制器架构以及MyBatis的数据持久化功能,为后端开发提供全面的支持。在部署阶段,前端编译生成的静态文件(HTML, CSS, JavaScript等)和后端编译的Java代码一同部署在Tomcat服务器上,从而使得整个Web应用能够在服务器上运行并被用户访问。

程序界面:

源码、数据库获取↓↓↓↓

项目完整可用,配合压缩包内数据库可直接运行使用。 eclipse+mysql5.7+jdk1.8 功能:推荐引擎利用特殊的信息过滤(IF,Information Filtering)技术,将不同的内容(例如电影、音乐、书籍、新闻、图片、网页等)推荐给可能感兴趣的用户。通常情况下,推荐引擎的实现是通过将用户的个人喜好与特定的参考特征进行比较,并试图预测用户对一些未评分项目的喜好程度。参考特征的选取可能是从项目本身的信息中提取的,或是基于用户所在的社会或社团环境。 根据如何抽取参考特征,我们可以将推荐引擎分为以下四大类: • 基于内容的推荐引擎:它将计算得到并推荐给用户一些与该用户已选择过的项目相似的内容。例如,当你在网上购书时,你总是购买与历史相关的书籍,那么基于内容的推荐引擎就会给你推荐一些热门的历史方面的书籍。 • 基于协同过滤的推荐引擎:它将推荐给用户一些与该用户品味相似的其他用户喜欢的内容。例如,当你在网上买衣服时,基于协同过滤的推荐引擎会根据你的历史购买记录或是浏览记录,分析出你的穿衣品位,并找到与你品味相似的一些用户,将他们浏览和购买的衣服推荐给你。 • 基于关联规则的推荐引擎:它将推荐给用户一些采用关联规则发现算法计算出的内容。关联规则的发现算法有很多,如 Apriori、AprioriTid、DHP、FP-tree 等。 • 混合推荐引擎:结合以上各种,得到一个更加全面的推荐效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值