深度学习基础环境配置

本文详细指导如何在Windows上配置深度学习环境,包括安装CUDA、选择PyTorch版本(12.1),以及使用Conda创建和管理虚拟环境,以实现在JupyterNotebook中运行深度学习代码。
摘要由CSDN通过智能技术生成

深度学习虚拟环境配置

首先需要确保你的电脑安装有cuda环境,在英伟达官网下载即可,现在pytorch支持的cuda驱动最高为12.1,不要下载错了。

其次需要确保你的电脑有一个运行python的环境,这里我们推荐使用conda,可以在官网下载anoconda或者miniconda,anoconda比较全面,miniconda是一个小型的conda环境。

  1. 创建conda虚拟环境

    conda create --name d2l python=3.9 -y
    
  2. 启动虚拟环境

    conda activate d2l
    
  3. 在虚拟环境中安装pytorch(cuda版本,指定cuda版本为12.1)

    conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch
    
  4. 在虚拟环境中安装jupyter notebook

    conda install jupyter
    
  5. 在虚拟环境中启动jupyter notebook

    jupyter notebook
    
  6. 启动完成后,可以新建一个python3文档将下方代码输入并运行

    import torch
    print(torch.__version__)
    print(torch.cuda.is_available())
    

    如果输出结果为torch版本号,True,则证明安装完成,接下来你就可以开启你的深度学习之旅了。

需要注意的是,在你关闭jupyter notebook后,下一次想使用pytorch和cuda加速时,你需要再次启用虚拟环境,并再次在该虚拟环境中打开jupyter notebook,代码如上第2部分,第5部分代码。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值