深度学习虚拟环境配置
首先需要确保你的电脑安装有cuda环境,在英伟达官网下载即可,现在pytorch支持的cuda驱动最高为12.1,不要下载错了。
其次需要确保你的电脑有一个运行python的环境,这里我们推荐使用conda,可以在官网下载anoconda或者miniconda,anoconda比较全面,miniconda是一个小型的conda环境。
-
创建conda虚拟环境
conda create --name d2l python=3.9 -y
-
启动虚拟环境
conda activate d2l
-
在虚拟环境中安装pytorch(cuda版本,指定cuda版本为12.1)
conda install pytorch torchvision torchaudio cudatoolkit=12.1 -c pytorch
-
在虚拟环境中安装jupyter notebook
conda install jupyter
-
在虚拟环境中启动jupyter notebook
jupyter notebook
-
启动完成后,可以新建一个python3文档将下方代码输入并运行
import torch print(torch.__version__) print(torch.cuda.is_available())
如果输出结果为torch版本号,True,则证明安装完成,接下来你就可以开启你的深度学习之旅了。
需要注意的是,在你关闭jupyter notebook后,下一次想使用pytorch和cuda加速时,你需要再次启用虚拟环境,并再次在该虚拟环境中打开jupyter notebook,代码如上第2部分,第5部分代码。