医疗与计算技术:ARIMA模型与普适计算的应用洞察
1. ARIMA模型在医疗保健指数预测中的应用
1.1 ARIMA模型基础概念
在时间序列分析中,ARIMA(自回归积分滑动平均)模型是一种常用的预测工具。其中,$P$ 代表时间序列值对其自身滞后值进行回归的结果;$q$ 是误差项滞后值的移动平均值;$\epsilon_t$ 表示在时间 $t$ 的随机误差。ARIMA 模型的处理过程主要包括测试、识别、估计和预测几个步骤。在进行预测之前,需要进行模型拟合检查,以确定数据的可靠性和有效性,进而对序列的未来模式进行预测。
1.2 ARIMA模型的开发步骤
1.2.1 线性趋势模型
从 1999 年 2 月到 2020 年 12 月开发 ARIMA 模型时,首先使用线性趋势模型对收盘价进行趋势分析。拟合的趋势方程为:
$Y_t = -16672 + 3.21555t$
其准确性度量指标如下表所示:
| 准确性度量指标 | 值 |
| ---- | ---- |
| MAPI | 41 |
| MAD | 1665 |
| MSD | 34497856 |
1.2.2 平稳性检验
平稳时间序列是指其统计特性(如均值、方差、自相关性等)随时间保持恒定的序列。大多数统计预测方法假设时间序列可以通过数学变换近似地变为平稳序列。这里使用增强迪基 - 富勒检验(Augmented Dickey - Fuller Test)来检验数据的平稳性,其假设如下:
- 原假设($H_0$):数据是非平稳的。
- 备择假设($
订阅专栏 解锁全文
2396

被折叠的 条评论
为什么被折叠?



