用神经技术测量情绪:原理、方法与应用
1. 情绪研究的背景与挑战
情绪是人类体验的核心部分,它驱动着我们的许多行为,是我们生活中诸多行动动机的基石。然而,我们目前仍未完全理解情绪的神经和生理基础。
情绪可以宽泛地定义为对外部刺激的反应行动,或者是个体自发产生的一系列行动模式。它既可能由环境刺激引发,也可能源于身体内部,如记忆、身体疼痛或不适等。
为了科学地理解情绪,首先需要建立一个可量化的框架来测量情绪。心理学领域为此开发了多种多维框架和可量化的标签系统,用于在不同情境下描述情绪。
1.1 情绪分类系统
目前存在多种情绪分类系统,主要分为多维分类方案和类别标签系统:
- 多维分类方案 :
- ** valence - arousal 环形模型 :将情绪映射到一个连续的二维平面上,通过情绪的效价(愉悦或不愉悦程度)和唤醒度(兴奋程度)两个轴来分类所有情绪。例如,“恐惧”处于低(负向、不愉快)效价和高(正向、兴奋)唤醒度的位置,而“兴奋”则处于高效价和高唤醒度的位置。
- Schimmack 和 Grob 三维模型 :在 valence - arousal 模型基础上增加了第三个维度“紧张”,用于描述特定情绪所涉及的压力或紧张程度。
- 愉悦 - 唤醒 - 支配三维模型 :从不同维度对情绪进行分类。
- 类别标签系统 :
- 日内瓦情感音乐量表(GEMS) :通过一组选定的形容
超级会员免费看
订阅专栏 解锁全文
3933

被折叠的 条评论
为什么被折叠?



