309. Best Time to Buy and Sell Stock with Cooldown【M】【56】

175 篇文章 0 订阅
157 篇文章 0 订阅

Say you have an array for which the ith element is the price of a given stock on day i.

Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions:

  • You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).
  • After you sell your stock, you cannot buy stock on next day. (ie, cooldown 1 day)

Example:

prices = [1, 2, 3, 0, 2]
maxProfit = 3
transactions = [buy, sell, cooldown, buy, sell]

Credits:
Special thanks to @dietpepsi for adding this problem and creating all test cases.


Subscribe to see which companies asked this question




引入辅助数组 sellsbuys
sells[i]表示在第i天不持有股票所能获得的最大累计收益
buys[i]表示在第i天持有股票所能获得的最大累计收益

初始化数组:
sells[0] = 0
sells[1] = max(0, prices[1] - prices[0])
buys[0] = -prices[0]
buys[1] = max(-prices[0], -prices[1])

状态转移方程:

sells[i] = max(sells[i - 1], buys[i - 1] + prices[i])
buys[i] = max(buys[i - 1], sells[i - 2] - prices[i])

所求最大收益为 sells[-1]






class Solution(object):
    def maxProfit(self, prices):
        p = prices
        l = len(p)
        
        if l < 2:
            return 0
        
        hold = [0] * l
        sell = [0] * l
        
        hold[0] = p[0]
        hold[1] = max(-p[0],-p[1])
        
        sell[0] = 0
        sell[1] = max(0,p[1] - p[0])
        
        for i in xrange(2,l):
            #print i
            sell[i] = max(hold[i-1] + p[i], sell[i-1])
            hold[i] = max(sell[i-2] - p[i], hold[i-1])
        
        return sell[-1]


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值